Ramble/WordPress auto-post time: 2014 in review

The WordPress.com stats helper monkeys prepared a 2014 annual report for this blog.

Here’s an excerpt:

Madison Square Garden can seat 20,000 people for a concert. This blog was viewed about 66,000 times in 2014. If it were a concert at Madison Square Garden, it would take about 3 sold-out performances for that many people to see it.

Click here to see the complete report.

Teardown of Kentli PH5 1.5 V Li-Ion AA battery

June 17, 2015 – Performance analysis/review HERE!

After having an entire month of dormancy on this blog, I’m finally beginning to cross off the blog posts on my “Pending” list.

Last year, I made a blog post talking about Kentli’s lithium-ion based AA battery that has an internal 1.5 volt regulator. The first order never arrived, and the second one had arrived a few months ago but I never got to actually taking one of the cells apart. That changes today.

Cell overview

The battery itself looks like a regular AA battery, except for the top positive terminal. There’s the familiar ‘nub’ that constitutes the 1.5 volt output, but also has a recessed ring around it that provides a direct connection to the Li-ion cell’s positive connection for charging.

 

After peeling the label, we are met with a plain steel case, save for the end cap that appears to be laser spot-welded. Wanting to take apart the cell with minimal risk of shorting something out inside, I used a small pipe cutter to gently break apart the welded seam. Two revolutions and a satisfying pop sound later, the battery’s guts are revealed.

Battery internals

The PCB that holds the 1.5 volt regulator is inside the end cap, with the rest made up of the Li-ion cell itself. Curiously enough, the cell inside is labeled “PE13430 14F16 2.66wh” which is interesting in more than one way. First of all, the rated energy content of the cell is less than what’s on the outside label (2.66 watt-hours versus 2.8), and the cell inside is actually a Li-ion polymer (sometimes called a “Li-Po” cell) type; I was expecting a standard cylindrical cell inside. Unfortunately, my Google-fu was unable to pull up any data on the cell. I might attempt to do a chemistry identification cycle on the cell and see if TI’s battery database can bring something up.

Battery circuitry

The end cap’s PCB uses a Xysemi XM5232 2.5 A, 1.5 MHz synchronous buck converter to provide the 1.5 volt output. According to the datasheet, it is a fully integrated converter with all the power semiconductor components residing on the chip itself. The converter is rated for 2.5-5.5 volt operation, well within the range of a Li-ion cell. Additionally, it has a rated Iq (quiescent/no-load current) of only 20 microamps. The buck converter’s 2.2 microhenry inductor is magnetically unshielded which may cause some increased EMI (electromagnetic interference) emissions, but I don’t have the equipment to test this.

I was looking around for the battery’s protection circuit, and found it on the flex PCB that surrounds the Li-ion cell. It uses a Xysemi XB6366A protection circuit which, like the buck converter, is a fully-integrated device; there are no external protection MOSFETs for disconnecting the cell from the rest of the circuit.

Performance analysis

December 14, 2015 – After extensive and detailed analysis (148 MB of text files!), I’ve analyzed the battery’s voltage and output capacity, which can be viewed HERE (lots of pretty graphs; check it out!).

The data doesn’t stop there. It took almost three years to track the cell’s self-discharge, but the data is finally in. The final report is available here, but previous installments are available here (Part 1), here (Part 2), here (Part 3)here (Part 4) and here (Part 5).