Status Update: Of Phones and Fire

Things might be on a bit of a hiatus for the next little while. My trusty Sony Xperia Z5 Compact literally went up in flames a few hours ago, and I need to find a replacement very soon, as well as recover any data that wasn’t saved to my SD card. Thankfully, apart from a sore throat and burning eyes from battery smoke, I am doing fine (as well as my house).

IMG_4711

My Sony Xperia Z5 Compact… after the lithium-ion battery fire.

Once things settle down, I’ll hopefully have a juicy story about lithium-ion battery fires and (failed) eMMC data recovery.

UPDATE (May 18, 2018): I upgraded to a Samsung Galaxy S9 a couple days ago. The eMMC chip I desoldered from the Z5 Compact is effectively bricked, as it only identifies itself but no data can be read – I suspect that the intense heat must have “baked” the NAND flash and result in too many uncorrectable bit errors that the firmware couldn’t recover from. There goes my progress in Angry Birds 2 (among other data)…

Advertisement

Tutorial: Recovering Cookie Clicker saves from an offline installation/backup of Google Chrome

Update (August 29, 2018): Turns out cleaning out your cookies/cache will erase your Cookie Clicker save. Who would’ve thought…

Cookie Clicker saves: You don’t realize the importance of saving your progress until you lose your save data. A few days ago I opened Chrome to my always-running instances of Cookie Clicker, but found that all of my progress was deleted (and it was showing a “Don’t forget to back up your save” message just to add insult to injury).

My heart sank when I realized that one of my runs, over three years old, had suddenly vanished into thin air. I tried restoring Google Chrome’s data via a Shadow Copy; no dice. I tried using my Windows Home Server 2011 backups, but realized that it would take over an hour to restore my Chrome folder. After much frustration, I decided to retrieve and examine Chrome’s Local Storage folder and see whether I could retrieve my save files that way – and it worked! Here’s how to recover your own Cookie Clicker saves…

Retrieving an older version of Google Chrome’s data folder

If you have Shadow Copy (aka Previous Versions) enabled, you may be in luck if the restore point(s) available have intact game save information. If you have an offline backup solution, that may be usable as well. If you have neither, you could try it on your current Chrome installation but your chances of recovery are much slimmer.

For Windows, Google Chrome’s default Local Storage folder located at: %USERPROFILE%\AppData\Local\Google\Chrome\User Data\Default\Local Storage

There will probably be a large number of files ending in .localstorage and .localstorage-journal – these are unlikely to contain your saves, and if they are present, they will be many months out of date; Google has begun storing websites’ local storage in a LevelDB database. The database in question is stored in a folder called leveldb.

If you are attempting to retrieve the data from a current Chrome installation, close Chrome before continuing.

Copy this “leveldb” folder to another (safe) location as to avoid any accidental overwrite of the database while trying to recover the game saves. Download and install the FastoNoSQL database browser software (it’s a trial, but for our purposes it will do just fine – just follow the registration instructions and you can whip up a temporary email address if you need to).

Browsing the LevelDB database

When FastoNoSQL is opened for the first time, the Connections window will appear. Click the “Add connection” button (it looks like a green button with a + symbol on it); even though we’re just browsing some database files, it’s considered to be a “connection” to the database. Select “LevelDB” and choose the folder that holds the “leveldb” folder that was previously copied.

Once the database is opened, note the number of database keys (in my case it was 1212), right-click the “default” database in the Explorer tree on the left-hand side of the FastoNoSQL window, and select “Load content of database”. Enter the number of keys previously noted into the “Keys count” field, then click OK.

In the “Search…” box, enter this text (select all the text in this box):

\\x5f\\x68\\x74\\x74\\x70\\x73\\x3a\\x2f\\x2f\\x6f\\x72\\x74\\x65\\x69\\x6c\\x2e\\x64\\x61\\x73\\x68\\x6e\\x65\\x74\\x2e\\x6f\\x72\\x67\\x00\\x01\\x43\\x6f\\x6f\\x6b\\x69\\x65\\x43\\x6c\\x69\\x63\\x6b\\x65\\x72\\x47\\x61\\x6d\\x65

This cryptic-looking text is a hexadecimal-escaped version of the string _https://orteil.dashnet.org, an SOH (Start of Header) character, and CookieClickerGame.

If your saves are found, you will see one or two entries, depending on whether or not the normal and/or Beta saves are present. The first entry will be the normal version of Cookie Clicker, and the second one, with a slightly longer key (ending in “\x42\x65\x74\x61”) is the for the Beta. Right-click the desired entry and choose “Edit…” to view the game save data. Copy the contents of the “Value” field into a text editor (Notepad, etc.), and delete the very first character before “Mi4w” – this is an SOH (Start of Header) character and we don’t need it to restore the game save. Save this text file so you have a backup of your game save, and import the file into Cookie Clicker (either by copy-pasting the text or using the “Load from file” button).

The game save should look like this (look for the bolded characters to ensure the game save data is intact):
Mi4wMDQ1fHwxNTI [... text omitted ...] OkwoDCgAR8%21END%21

If everything works out, your Cookie Clicker game save should be restored from the brink of destruction!

Completed: Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 6)

Looking for the teardown or how well the Kentli PH5 battery performs under load? Click the links to learn more.

It’s finally happened – the self-discharge test of the Kentli PH5 Li-ion AA battery has finally come to an end… and it only took almost 3 years!

 

april 29 2018 stats

Kentli PH5 self-discharge test statistics

Self-Discharge Rate

I never anticipated this test would run for so long; although the PH5 did not have a manufacturer-specified self-discharge rate, marketing materials suggested that the batteries had a storage life that was “3-5 times longer than Ni-MH batteries”. Wikipedia states that after one year, normal Ni-MH batteries lose about 50% of their capacity, and low-self-discharge (LSD) Ni-MH batteries lose 15-30%.

Correlating this with the data collected from the Texas Instruments bq27621-G1 fuel gauge, the battery lost 40% of its charge within one year, placing it in between the standard and LSD Ni-MH chemistries. Using Excel’s SLOPE() function, the self-discharge rate was calculated to be 0.10108%/day.

Experimental Improvements

There is some error in State of Charge measurement when using the bq27621 fuel gauge. As it uses the Impedance Track algorithm, open-circuit voltage is used to determine a battery’s state of charge upon gauge initialization. This OCV curve is chemistry-specific, with slightly different formulations requiring different chemistry ID codes. The bq27621 has a fixed Chemistry ID of 0x1202 (LiCoO2/LCO cathode, carbon anode), but experimental data revealed a better-matched Chemistry ID of 0x3107, 0x1224 or 0x0380; the first two chemistries pointed towards a LiMnO4/LMO cathode chemistry which I was somewhat skeptical of, but did not test further.

Using another gauge with a different, programmable Chemistry ID could have led to a straighter SoC curve. This wouldn’t be too difficult to reproduce, as the battery voltage can be fed to the gauge in order to recompute the state of charge. Additionally, the bq27621 has a Terminate Voltage of 3.2 volts (the gauge considers this voltage to be the point in which it reads 0% SoC), which is higher than the battery’s protection voltage of 2.4 volts (granted, there is very little charge difference in this area of the discharge curve).

My test setup was not temperature-controlled; I live in a house without air conditioning and room temperatures can vary from 15 to 35 degrees C (59 to 95 degrees F), depending on the season. However, I doubt that this would have had too much impact on discharge rate, and this would better represent real-life scenarios where a constant temperature may not necessarily be guaranteed.

Finally, this test was performed on a new, uncycled battery. I suspect the discharge rate would be significantly higher on an aged battery that was subject to a lot of charge cycles and day-to-day wear.

Conclusion

This was the longest-running experiment I’ve ever conducted on this blog. The Kentli PH5’s self-discharge rate lasts longer than a standard Ni-MH battery, but a LSD (low-self-discharge) Ni-MH battery would still last longer, albeit with a lower terminal voltage. The battery, when new, should be expected to last almost 3 years without a charge (although there won’t be any charge left by then); it will hold about 60% of its capacity after 1 year of storage.

To download a copy of the self-discharge test data, click here.