Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 5)

It’s amazing – 894 days (and counting) have elapsed since the start of my long-term experiment, documenting the real-world self-discharge behavior of the Kentli 1.5V Li-ion AA battery… and it’s still ongoing! How have things fared so far?

Surprisingly, even after spending nearly 30 months on the shelf, there is still 12% capacity left. The voltage has dropped from 4.216 to 3.692 volts according to my bq27621 Li-ion fuel gauge; the State of Charge (SoC) has dropped 50% since my last update.

november 28 2017 stats

The linear end date prediction is holding pretty steady, having changed slightly to an estimated 0% charge date somewhere in February 2018.

On that note, I’m impressed by how much attention this little battery has received, even years after my initial review. Every day I see a handful of views checking out the teardown and performance metrics, and there seems to be hardly any sign that this will change anytime soon. To everyone who stops by to check out my blog posts: thank you! 🙂


Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 4)

“It’s been a long time… How have you been?”

It’s been almost a year since I started my discharge test of the Kentli PH5 Li-ion AA battery, and the battery has lost almost 40% of its capacity due to self-discharge.

The discharge curve has gotten a lot less… linear since the last time I posted a self-discharge update. The battery is down to 62% state-of-charge, and its voltage has dropped down to 3.89 volts. Still, there’s a lot of time left until this battery reaches empty… but when?

I’m no statistician, but doing a linear extrapolation in Excel gives an approximate end date of January 2018, and the SLOPE() function in Excel gives me an average drop of 0.111%/day. Of course, this can easily change over the course of this test, but only time will tell…

HDQ Utility version 0.96 now available!

Whew, I’ve been working on this version for quite a while. With the helpful feedback of many people that have tried my software, I’ve made a large number of improvements to the software; of course, there are plenty of features that aren’t implemented yet, but are being worked on.

More information about how this utility works can be found here.

Download HDQ Utility v0.96 here:


  • (Major improvement!) Improved HDQ logging functionality (logs are now saved to a separate file instead of being overwritten).
    • Example: “HDQ Log (2015-10-26 at 19.02.50) – HDQ Utility v0.96.txt”
  • Improved HDQ communication (HDQ breaks no longer require the serial port to be opened more than once, and HDQ no-response timeouts are decreased from 0.5 to 0.3 seconds.
  • Reworded certain error messages for clarity.
    • Example: “Communication error: Cannot read byte from address 0x02 (No response from device).” 
  • Renamed file ‘config.txt’ to ‘Config – COM Port.txt’ for clarity.
  • Improved state-of-health warnings by making them non-modal (they do not require the user to dismiss the message).
  • Added more notifications for unidentified and uninitialized batteries. (Uninitialized batteries are determined by a FULL ACCESS security state, with Impedance Track disabled.)
  • Fixed invalid device name and maximum load current readings for v5.02/sn27545-A4 based batteries (e.g. iPhone 6, 6+…).
  • Added time-to-full readings (for firmware older than v2.24).
  • Improved error-checking for device identification (it will display a notice that the tool may need to be restarted).
  • Updated DingoLib UI library to auto-resize window to 0.9x display resolution for improved readability on larger monitors.


  • Create a dedicated section on my blog for the HDQ Utility.
  • Create a user’s manual describing the parameters displayed by the program (in particular, the Advanced Battery Information section).
  • Improve data logging functionality by saving logs to a subdirectory instead of the program’s root to decrease file clutter.
  • Improve error-checking for commands (retry reads if one or more bytes are not received from the device).
  • Add error statistics indicating how many communication errors occurred during data collection.
  • Improve support for older (older than v1.25) firmware.
  • Improve support for v5.02/sn27545-A4 devices (make use of advanced commands available in this firmware version).
  • Add support for restarting of data collection without having to re-execute the program.
  • Add Data Flash memory functions to allow for readout of advanced configuration, serial number, lifetime/black-box data, etc.
  • Rewrite this program in something that’s not LabWindows/CVI… also, use of a GUI rather than a non-console text UI.

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 3)

Aw what, it’s October already? So much for having another blog post in September…
But anyway, “more months, more data!™”

The voltage of the PH5 has dropped down to 4.093 volts as of today (October 1st, 2015), and its State of Charge is now 93%. There’s just enough data to guess the discharge rate of the PH5: with the currently logged data, the PH5 self discharges at approximately 0.103%/day. At this rate, the cell should last years before finally reaching zero. Looks like this will be a very, very long term test…

(At least that would give me more time to procrastinate write blog posts.)

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 2)

After my first self-discharge analysis of the Kentli PH5 Li-ion AA battery, I have collected another month’s worth of data.

The battery’s voltage drop has been surprisingly linear. Although I didn’t get the exact day when the bq27621-G1’s State of Charge readout dropped to 99%, it is quite clear that the state of charge is dropping with a fairly steep curve now. That said, because the battery’s voltage is still far away from the ‘flat region’ of the discharge curve, it is difficult to determine when the battery will discharge itself completely at this time.

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 1)

As an extension to my previous performance analysis of Kentli’s PH5 Li-ion AA battery, I fully charged an unused PH5 and left it on my desk to self-discharge. Every now and then, a Texas Instruments bq27621-G1 fuel gauge is hooked up to the Li-ion battery terminals (in the case of the PH5, the recessed ring around the 1.5V terminal) and the bq27621’s default settings are used to measure the voltage and state of charge.

I started this test on June 18th, 2015 and will keep taking occasional measurements until the protection IC in the PH5 shuts down.

Since the 18th, the voltage dropped from 4.216 volts down to 4.192 volts as of July 6, 2015; the bq27621’s State of Charge reading remains at 100% for the time being. The voltage drop has been fairly linear so far, but I expect it to taper off as the battery discharges to the Li-ion cell’s “flat region”, and only after that do I expect the cell’s voltage to decline more rapidly.

So, about that Kentli battery…

It’s been a while since I’ve posted about the Kentli PH5 battery, which is a Li-ion cell with an integrated 1.5-volt regulator, wrapped up in an AA-sized package. Although I haven’t written much about its performance yet, that doesn’t mean I haven’t been doing work on it. In fact, I’m sure I have never put so much work into a single blog post before!

The full analysis of the battery’s performance is not fully complete, but I’ll reveal some details of my test setup and what I’m currently working on:


I’m doing a much more thorough analysis of this battery than I have done with any other one on this blog. I have created a second bq27541 fuel gauge board, but with the explicit goal of measuring the voltage, current, passed charge (mAh) and temperature of a given DC-DC converter. This way, I can measure the input and output of the DC-DC converter simultaneously, greatly enhancing the data I can collect.

These are the data points/attributes I am currently collecting:

  • Battery voltage sag at high load currents
  • Battery capacity over different load currents (it’s not constant!)
  • DC-DC efficiency, both at different load currents but also over a single discharge cycle
  • Temperature rise of the DC-DC converter at different loads, and also over a single discharge cycle
  • Changes in battery capacity and internal resistance over many charge cycles

I want to be as thorough as possible with my measurements, mostly because nobody else has done a detailed performance review of this rather unusual battery, but also partially because I want to challenge myself and see how much of a “real engineer” I can be (#JustHobbyistThings). 😛