Performing safer AC line voltage measurements using isolated amplifiers

DISCLAIMER: AC line (mains) voltage is not something to be taken lightly! Attempting to safely handle line voltages while minimizing the risk of harmful or fatal electric shock is the main motivator for me to design and build this circuit. However, I am no electronics engineer and I definitely have no formal training on international standards pertaining to high-voltage safety. I accept no responsibility, direct or indirect, for any damages that may occur if you attempt to make this circuit yourself, including personal harm or property damage. Additionally, there is no warranty or guarantee, express or implied, on any content pertaining to this blog post (or any other posts).

UPDATE (November 19, 2018): Added isolation voltage ratings for the amplifier and DC-DC converter.

As seen on Hackaday!

Back in mid-2017 I won a Keysight DSOX1102G digital storage oscilloscope (DSO), a piece of equipment long on my wish list but never acquired until then. One thing I’ve wanted to be able to measure with an oscilloscope for a long time was the waveform of the AC utility (in other words, the wall outlet). However, doing so presents a very real risk of blowing equipment up or shocking yourself (and possibly other people). In order to prevent this, I needed a way to perform measurements on the AC line without being directly connected to it; in other words, I need galvanic isolation.
Continue reading


eMMC Adventures, Episode 3: Building a custom adapter to use cheap eMMC-based 32GB SSD modules

As seen on Hackaday!

While on my quest for more eMMC-based storage devices, I stumbled upon a few devices that piqued my interest: eMMC-based SATA SSDs! I found two models of particular interest: Dell had M.2 modules with a 2.5″ adapter, and HP had custom boards intended for use in cheap laptops (for example, the HP 14-an012nr). Although the former was easier for me to use (but not acquire), I will be focusing on the latter in this blog post.
Continue reading

Upgrading a passive Power over Ethernet splitter with 802.3af compatibility

As seen on Hackaday!

If you haven’t heard of Power over Ethernet, chances are you’ve experienced its usefulness without even knowing about it. Power over Ethernet (PoE for short) does exactly as the name implies: power is sent over the same Ethernet cable normally used for data transfer. This is often used for devices like IP phones and wireless access points (often you see these APs in restaurants and other establishments mounted to the ceiling to provide Wi-Fi access), as it is far easier, cheaper and safer to provide low-voltage power instead of wiring in AC power which requires the help of a licenced electrician.


Continue reading

eMMC Adventures, Episode 2: Resurrecting a dead Intel Atom-based tablet by replacing failed eMMC storage

As seen on Hackaday!

Recently, I purchased a cheap Intel Atom-based Windows 8 tablet (the DigiLand DL801W) that was being sold at a very low price ($15 USD, although the shipping to Canada negated much of the savings) because it would not boot into Windows – rather, it would only boot into the UEFI shell and cannot be interacted with without an external USB keyboard/mouse.

The patient, er, tablet

The tablet in question is a DigiLand DL801W (identified as a Lightcomm DL801W in the UEFI/BIOS data). It uses an Intel Atom Z3735F – a 1.33GHz quad-core tablet SoC (system-on-chip), 16GB of eMMC storage and a paltry 1GB of DDR3L-1333 SDRAM. It sports a 4500 mAh single-cell Li-ion battery, an 8″ 800×1200 display, 802.11b/g/n Wi-Fi using an SDIO chipset, two cameras, one microphone, mono speaker, stereo headphone jack and a single micro-USB port with USB On-The-Go support (this allows the port to act as a USB host port, allowing connections with standard USB devices like keyboards, mice, and USB drives).

Continue reading

eMMC Adventures, Episode 1: Building my own 64GB memory card with a $6 eMMC chip

As seen on Hackaday!

There’s always some electronics topic that I end up focusing all my efforts on (at least for a certain time), and that topic is now eMMC NAND Flash memory.


eMMC (sometimes shown as e.MMC or e-MMC) stands for Embedded MultiMediaCard; some manufacturers create their own name like SanDisk’s iNAND or Hynix’s e-NAND. It’s a very common form of Flash storage in smartphones and tablets, even lower-end laptops. The newer versions of the eMMC standard (4.5, 5.0 and 5.1) have placed greater emphasis on random small-block I/O (IOPS, or Input/Output operations per second; eMMC devices can now provide SSD-like performance (>10 MB/s 4KB read/write) without the higher cost and power consumption of a full SATA- or PCIe-based SSD.

MMC and eMMC storage is closely related to the SD card standard everyone knows today. In fact, SD hosts will often be able to use MMC devices without modification (electrically, they are the same, but software-wise SD has a slightly different feature set; for example SD cards have CPRM copy protection but lack the MMC’s TRIM and Secure Erase commands. The “e” in eMMC refers to the fact that the memory is a BGA chip directly soldered (embedded) to the motherboard (this also prevents it from being easily upgraded without the proper tools and know-how.

Continue reading

HDQ Utility version 0.96 now available!

Whew, I’ve been working on this version for quite a while. With the helpful feedback of many people that have tried my software, I’ve made a large number of improvements to the software; of course, there are plenty of features that aren’t implemented yet, but are being worked on.

More information about how this utility works can be found here.

Download HDQ Utility v0.96 here:


  • (Major improvement!) Improved HDQ logging functionality (logs are now saved to a separate file instead of being overwritten).
    • Example: “HDQ Log (2015-10-26 at 19.02.50) – HDQ Utility v0.96.txt”
  • Improved HDQ communication (HDQ breaks no longer require the serial port to be opened more than once, and HDQ no-response timeouts are decreased from 0.5 to 0.3 seconds.
  • Reworded certain error messages for clarity.
    • Example: “Communication error: Cannot read byte from address 0x02 (No response from device).” 
  • Renamed file ‘config.txt’ to ‘Config – COM Port.txt’ for clarity.
  • Improved state-of-health warnings by making them non-modal (they do not require the user to dismiss the message).
  • Added more notifications for unidentified and uninitialized batteries. (Uninitialized batteries are determined by a FULL ACCESS security state, with Impedance Track disabled.)
  • Fixed invalid device name and maximum load current readings for v5.02/sn27545-A4 based batteries (e.g. iPhone 6, 6+…).
  • Added time-to-full readings (for firmware older than v2.24).
  • Improved error-checking for device identification (it will display a notice that the tool may need to be restarted).
  • Updated DingoLib UI library to auto-resize window to 0.9x display resolution for improved readability on larger monitors.


  • Create a dedicated section on my blog for the HDQ Utility.
  • Create a user’s manual describing the parameters displayed by the program (in particular, the Advanced Battery Information section).
  • Improve data logging functionality by saving logs to a subdirectory instead of the program’s root to decrease file clutter.
  • Improve error-checking for commands (retry reads if one or more bytes are not received from the device).
  • Add error statistics indicating how many communication errors occurred during data collection.
  • Improve support for older (older than v1.25) firmware.
  • Improve support for v5.02/sn27545-A4 devices (make use of advanced commands available in this firmware version).
  • Add support for restarting of data collection without having to re-execute the program.
  • Add Data Flash memory functions to allow for readout of advanced configuration, serial number, lifetime/black-box data, etc.
  • Rewrite this program in something that’s not LabWindows/CVI… also, use of a GUI rather than a non-console text UI.

Reading out HDQ-equipped battery fuel gauges with a serial port

Battery fuel gauges are the unsung hero of the battery world. There’s more to it than just measuring the voltage on the battery terminals,. These little chips are microcontrollers (tiny computers, essentially) that sit inside the battery pack and keep tabs on the battery’s performance for the life of that battery pack.

Texas Instruments makes battery fuel gauges that are small enough to fit in the circuitry of a cell phone, and one of the most common ones that uses this technology are iPhone batteries. These batteries use a single-wire interface called HDQ (which stands for High-Speed Data Queue). It may sound similar to Dallas Semiconductors’ 1-Wire protocol, but the two are completely different and incompatible with each other.

Protocol details

The HDQ protocol can be emulated with a serial port and a little bit of external circuitry. The protocol can be emulated with a serial port at 57600 baud with 8 data bits, no parity bit and 2 stop bits. Because this is a bi-directional bus, an open-drain configuration is needed. Most TTL serial ports are not open-drain, so some circuitry is required to do this. TI’s application note suggests using a CMOS inverter and an N-channel MOSFET along with a 1 kOhm pull-up resistor, but this can be cut down with a 74HC07 open-drain buffer and pull-up resistor.

[EDIT: June 13, 2015 – Corrected schematic]

The HDQ protocol uses a short pulse to indicate a logic 1, with a longer pulse to indicate a logic 0. The data is sent LSB (least significant byte) first, with a 7-bit address and an eighth bit to indicate if the operation is a read or write (0 is read, 1 is write). If it is a read operation, the fuel gauge will respond with one byte of data. As you might think, this is a very slow means of communication; the typical bus speed is 5-7 kilobits per second, but the actual usable throughput will be less than this.

The hack in this is that the bit timing can be made by sending a specially crafted UART byte that meets the timing specifications. Each bit takes up one byte of UART buffer memory, with 24 bytes being enough to perform an HDQ read (the first 8 bytes are echoed back to the PC and need to be ignored by the software). TI’s application note goes into this with a bit more detail.

Windows HDQ utility

HDQ utility icon, in all its pixelated glory.

HDQ utility icon, in all its pixelated glory.

I have written a small Windows program that will read out the battery’s main data, identify as a certain iPhone battery model (most iPhone batteries are supported), and save a copy of this data to a text file for safekeeping. This program requires the National Instruments LabWindows/CVI Runtime library to run, since I whipped this program up with the first available IDE on my college PC.


Screenshot of HDQ Utility version 0.96

The source code is not yet available (translation: I’m too ashamed of my programming skills to share it with others); however, a Windows executable is available for download below.

You will need to download the National Instruments LabWindows/CVI Runtime to run this program.

Current version (0.96):

Version 0.95:
Version 0.9:

Contributions are always accepted! Email me if you would like to send in a battery for me to analyze, or you can buy me a coffee through PayPal:

[EDIT – July 28, 2016] Welp, looks like the PayPal button’s broken (or was it never working to begin with…?). If you’d like to send anything to me, just give me a shout at!

[EDIT – August 2, 2016] Whoops, looks like I never had the button working in the first place. Hopefully it works this time.


An Easy Hook-Up: Creating breakout Power/HDQ breakout boards for iPhone smart batteries

Now that I’ve been amassing a greater and greater arsenal of iPhone batteries, it’s gotten to the point that it makes most sense to create a connector board that can bring out the Pack+/Pack- pins alongside the HDQ data pin so I can view the gauge’s status in GaugeStudio.

Why use iPhone batteries in DIY projects?

The benefit of using iPhone batteries (note they must be for the iPhone 4 or newer; older ones will lack the fuel gauge) in microcontroller-based projects, is that the fuel gauge allows the microcontroller’s program to read out its current battery level, power consumption, capacity and time-to-empty; you also get the usual built-in protection circuit to safeguard against short-circuits, overcharge/overdischarge and overcurrents.

Additionally, iPhone replacement batteries are easy to find online or in cell phone repair shops, making them cheap and plentiful.

What is this “HDQ” that I keep talking about?

HDQ is a communication bus originally made by Benchmarq (now a part of TI). It stands for “High-Speed Data Queue”, and is a serial bus that transmits data over a single wire. This, however, is not to be confused  with Dallas Semiconductor’s 1-Wire protocol. The basic idea is the same but they are completely incompatible with each other.

Board construction

The board was made up of an iPhone surface-mount connector, a 4-pin connector for HDQ data transfer, a 2-pin male header, and a 2-terminal screw terminal. As with many of my prototype boards, wiring of the board is done with thin, flat solar cell tabbing wire. It’s flat, pre-tinned, and can handle high currents easily.

The benefits of this sort of board is that it allows:

  • Easy, removable connections to the battery; no need to solder to the battery terminals directly
  • Access to the HDQ data pins and power terminals
  • Real-time monitoring of battery State-of-Charge (%), current (mA), voltage (mV), capacity (mAh) and also the remaining time-to-empty (minutes).
  • Adaptability for different connectors (either by making a separate board for that connector or by creating a single “universal” board)
  • HDQ protocol can be used by a microcontroller via either bit-banging the protocol, or using an on-chip UART. (subject to a separate post in the future)

Although I could have created one large breakout with all the available connectors populated, I wanted to be able to use multiple batteries at once for powering different devices. Additionally, the HDQ bus has no support for addressing multiple devices.

The iPhone 4, 4S and 5 batteries have an additional NTC thermistor pin, but I have left them disconnected since I can read out the battery temperature over HDQ anyways.


Keep in mind that not all Li-Ion batteries have the same charging voltage. The iPhone 4 and 4S batteries use a 3.7 volt cell, charging at 4.2 volts; but the iPhone 5, 5S and 5C batteries are 3.8 volts, charging at 4.3 volts. 4.3 volt cells can charge at 4.2 volts with a capacity reduction of 5-10%, but 4.2 volt cells must not be hooked up to a 4.3 volt charger. There is overcharge protection built into the battery but it should not be relied upon for regular charging. Apart from the usual risk of the battery catching fire (or even just puffing up like a balloon), you also permanently decrease the battery’s capacity and dramatically increase its internal resistance, essentially crippling the battery for life.

A Temporary Hold: Creating Li-Ion battery holders with prototype boards and pin headers

As seen on Hackaday!

Lithium-ion batteries are great. They have high energy density, are lightweight, and in the case of many portable devices, they can be easily swapped in and out. One problem with prismatic (the types you often find on cell phones that have a set of flat contacts on one end of the battery) packs is that they’re all custom; the cell may be standardized but the pack it’s in is often proprietary to a certain make and model. Sure, there are “universal” holders out there, but they provide poor electrical contact at best. Since I need a secure electrical connection when using my battery fuel gauges, I sought to create a more sturdy holder for the batteries I have lying around.

The construction of the holder is pretty simple. A strip of female pin header (I used a single-pin-width header but a double-width one can be used for greater mechanical strength) is used as an end-stop for the battery, and a right-angle pin header is used to create contact with the battery’s terminals and to provide the physical “clamping” needed to create a good connection. The right-angle header can be bent and soldered into place to adjust the holder to the particular cell you’re using. Additionally, be sure to use some high-quality FR4-based boards as the brown-coloured paper/resin-based boards won’t have as good resilience and strength, and probably won’t be plated through either (this improves the structural integrity of the holder since the pin headers will be under a bit of physical stress).

For connections, I have a 2-pin header (physically a 3-pin header with one removed to denote polarity) and a set of screw terminals. These are wired up using a flat ribbon “wire” used to connect solar cells together as they can handle several amps and come pre-tinned with solder.

This sort of setup can be adapted to nearly any commercially available prismatic battery, provided it uses a flat contact area on the sides.

Using a laptop battery to power lighter-socket devices

Laptop batteries can be a rather handy source of power, even if it’s not being used in a laptop computer. I built an adapter that converts the knife-blade connector that a laptop battery uses to a car lighter socket.

2013-12-24 02.02.02The connections are made by taking the blades of an ATO or ATC (regular size) car fuse, soldering them to some 16-gauge speaker wire, then soldering the other end to an inexpensive DC lighter socket.

2013-12-24 02.05.39This setup is only good for roughly 5 amps (the overcurrent protection on this battery is set to 6 amps) and the voltage near the end of discharge can be too low for certain devices; power inverters will stop at about 10 to 11 volts which leaves a small amount of battery capacity unused.

Convenient chips but even more inconvenient packages – Fail, fail, fail and fail again: Trying to solder the TPA2011D1 speaker amplifier

I was doing some prototyping of the TI TPA2011D1 3 watt Class-D amplifier that’s in a 1.2 x 1.2 mm 9-ball BGA package. Unlike my tries with the bq27421, these chips are downright painful to solder. Out of 5 chips that I’ve tried to solder, only one of them actually worked. That’s a 20% success rate. Bummer. The only thing that’s preventing me from being any more angry about these chips is that my back and shoulders hurt quite a bit after hunching over to try and solder these bastards for a good 6 hours.

“Thumbs down!” –Dave Jones

2013-07-25 01.35.11

Convenient chips, inconvenient packages: Making use of the Texas Instruments bq27421-G1 lithium-ion battery fuel gauge chip

As seen on Hack A Day!

I ordered some sample chips from TI a few weeks ago, most of them being lithium-ion battery “fuel gauge” chips. These chips are used in electronic devices to determine exactly how much energy is in the battery, and if the chip’s sophisticated enough, provide a “time until empty” prediction.

The bq27421 from TI is packaged in a tiny 9-ball grid array, packaged as a wafer-level chip scale package (WLCSP). This means there is no epoxy covering like normal ICs, making for a compact design that’s a good thing for space-constrained applications like modern cell phones. I’ll talk about this chip later on in this post.

The tiny BGA package means that prototyping with these chips is difficult if not impossible, depending on how large the chip is that you’re working with. The bq27421 is about 1.6 mm x 1.6 mm, which is less than 1/3 of the size of a grain of rice. No way you’d be able to put that on a breadboard… right?

2013-06-14 15.51.58Well, you can, with a small breakout board, some magnet wire, epoxy (a bigger deal than you might initially think), patience and steady hands. I mounted the chips in what I call a mix between dead-bug (where the contacts face up as if the chip was like a dead bug on the ground) and chip-on-board construction (where the chip is glued directly to a board, wire-bonded and then covered in epoxy). I used some SOIC-to-DIP boards from DipMicro Electronics (link). I often use these boards when doing work on prototyping board since using these surface-mount parts reduce the board’s height compared to using actual DIP packaged chips (which are much less common for modern ICs anyway).

The chip is first affixed to the breakout board using a small amount of epoxy and allowed to cure for several hours. The epoxy, from what I’ve found, is crucial to your success; superglue and other adhesives won’t stand up to the heat of a soldering iron, and if it loosens you can end up ruining your chip and wasting your time spent working on it.

After letting the epoxy cure, I then prepare the bond pads around the chip. I place a liberal amount of solder on each pad to allow easy connection with the iron later; I want to minimize the stress on the tiny 40-gauge magnet wire because once the connection is made, the solder ball that the chip came with won’t be as easy to solder to the second time around.

Next up is the actual soldering process. I created a pinout for the board in PowerPoint to help plan out how I’ll solder the wires. After tinning a long length of 40-gauge magnet wire, I then solder the wire first to the solder ball on the chip, then solder the other end to the pad I previously put solder on. To minimize the stress on the wire afterwards, I use a small utility knife to cut the end of the wire where the pad is. I then complete this for the rest of the contacts. This took me an hour and a half the first try, but took me about 20 minutes the second time around. Also, for my second try, for the BAT and SRX pins, which carry the full current for any loads connected, I used 30-gauge wire-wrapping wire to allow a bit more current-carrying capacity. It probably is overkill since the maximum current rating for the bq27421 is 2 amps continuous, but I felt a bit more at ease connecting the pins this way.

After checking for short and open circuits with a multimeter I then placed headers onto the board and put it into my “evaluation board” that I created just for this chip. Using an EV2400 box from TI, used to connect to their vast range of battery-management chips, I connect the box to my PC and run their GaugeStudio software to verify that the chip works.

… and it does, like a charm! I was able to communicate with the chip and also view its operation in real-time.

One thing that was causing me trouble before was that after removing the battery and putting another one in, I found that the gauge chip sometimes wouldn’t be recognized by the PC. Being unsure why it was doing this, I dug through the reference manual, and found one tiny part in the manual that showed me why it wasn’t working consistently.

gpoutThe GPOUT pin was left floating on my board, and the chip requires a logic high signal before it starts up. This brings back memories of my digital electronics class in college; these floating inputs can cause all sorts of trouble if you’re not careful, and in this case, it was mentioned only once in the reference manual. After using a 1 megohm resistor to pull up the pin, the chip worked flawlessly. Now that I verified that the chip was working, I mixed up some more epoxy and covered the chip, making sure that the bond wires and chip were covered to prevent damage.

After all that, I had a couple working highly-advanced battery gauges that I could fool around with, and also learned a couple things about deadbugging SMT components and also the basics of chip-on-board construction.