Discreet Quality: Review of the sketchiest-looking 512GB Lexar SDXC card

It’s amazing how much Flash-based storage technology has advanced in the last few years, especially considering how much prices have dropped.

Naturally, when it comes to speed, capacity and price, consumers tend to look for the lowest price; as manufacturers race towards the bottom line, many will take the low road and sell counterfeit goods. This is especially prevalent in the NAND Flash market, and online marketplaces like eBay, AliExpress and even Amazon are fraught with countless fake storage devices that claim high capacities at too-good-to-be-true prices. It’s not uncommon to see unrealistic capacities sold for a few tens of dollars, but what the customer ends up receiving is a storage device with a falsified capacity that will pass a simple copy-paste test but will corrupt itself with extended use.

While browsing eBay for some deals on some Flash storage, I happened upon a very strange-looking 512GB SDXC card. It was listed as an OEM Lexar card but had no labels, selling for an unprecedentedly low price of $60 USD (the card would cost several times more at normal retail outlets). On the outside, everything about the card’s exterior seems to raise a red flag that the card is not to be trusted.

Lexar OEM 512GB Listing

eBay listing of the Lexar OEM 512GB SDXC card

Upon closer inspection, there are some hints that one shouldn’t always judge a book – er, card – by its cover. The laser-etched markings might look like cryptic gibberish to the layperson, but the markings “SM2702BAC” and “L95B” have actual meanings; the SM2702 is an SD card controller by Silicon Motion, and L95B refers to the 16nm generation of MLC NAND Flash by Micron, which owns the Lexar brand (but unfortunately is being discontinued). The seller also says that the cards have been tested, which is reassuring.

I decided to take the plunge and plunk down about $80 USD including shipping (or $105 CAD at the time) and buy a card for myself.

A Closer Look

After waiting a few weeks, the card showed up in my mailbox. The seller did a very good job packaging it, even placing the card in an ESD shielding bag before wrapping it with foam and placing it in a bubble mailer (it’s much better than the plastic wrap I’ve had some used i7 CPUs by a huge amount).


The card looks very plain, with the top label area lacking any labeling, and the same laser-etched markings on the back. The card’s contacts indicate that it has been placed in a card reader a few times before (presumably for testing).

Card Identification

I used my old Gateway M-7305u laptop with Kali Linux to see what information the card reports. These older laptops have true SDA (SD Association) compliant card slots, so they will identify as an actual SD card instead of a USB drive like with many modern laptops; in Linux these show up as devices like /dev/mmcblk0 instead of /dev/sda. By using the “dmesg -wH” command I can read the kernel logs once the card is connected to the computer.

[Jan24 10:52] mmc0: new high speed SDXC card at address 59b4
[ +0.094917] mmcblk0: mmc0:59b4       483 GiB 
[ +0.001111] mmcblk0: p1

The card reports a capacity of 483 GiB (that’s binary gigabytes, or 519.6 decimal – a.k.a. “weasel” – gigabytes), but the SD card name is ”     ” – five ASCII spaces. Everything about the card superficially rings alarm bells! However, I wasn’t phased, and decided to try the card in my Kingston FCR-HS4 USB 3.0 card reader, which uses the Realtek RTS5321 chipset.

Lexar OEM 512GB Partition

OEM Lexar 512GB SDXC card in Disk Management

Examining the card in Windows shows that the card was formatted as exFAT with a drive name of “SDXC”, suggesting it may have been formatted by the seller with the SD Formatter tool. Looking at the raw sector data in Hard Disk Sentinel suggests that the seller indeed do a full capacity test, as the data patterns match that of the program H2testw, an excellent tool for detecting fake Flash memory. This is a good sign – the seller did their due diligence and by this point I already had a good feeling that the card is genuine.

However, I wanted to test this for myself, so I ran the H2testw utility myself and let it run on the card. The write speed remained consistent throughout, which is a good indication that the card is not overwriting memory locations like in fake Flash storage (the card did get uncomfortably hot during the process, however). It took four hours to complete the write and read test, but everything came out clean – the card is genuine, even when every other sign says otherwise!

Lexar 512GB OEM H2testw

H2testw verifying that the OEM Lexar card’s 512GB capacity is genuine


With the card verified, it was time to put it to the test.


The card showed sequential read speeds of 92.03 MB/s and sequential write speeds of 60.45 MB/s; the sequential write speed coincides with the seller’s rating of 400x (400 * 150 kB/s = 60 MB/s).

The random 4K I/O performance isn’t great, especially with writes, but it isn’t bad either. The card managed 4K random read speeds of 6.644 MB/s (1700.9 IOPS) and 4K random write speeds of 0.671 MB/s (171.8 IOPS).

Lexar 512GB OEM Benchmark

Benchmark of the 512GB Lexar OEM SDXC card in CrystalDiskMark 3.0.4


In the end, I was satisfied – I got a 512GB SDXC memory card at a fraction of the cost from a normal retail outlet. It’s not exactly a speed demon, but it’s not a slowpoke either. The looks may be deterring for most folks (and rightly so), but with the right tools and knowledge, one can pick up one of these less aesthetically-pleasing memory cards and save some serious coin in the process.


eMMC Adventures, Episode 4: Recovering data from physically damaged BGA eMMC Flash storage chips

As seen on Hackaday!

The ball grid array (BGA) chip package has been instrumental in getting modern electronics to fit in smaller and smaller spaces, as it uses tiny balls of solder on the bottom of the package to make electrical connections, instead of copper leads on the edge of the chip package. This allows for hundreds of connections to be made in a small amount of PCB area, but their size also makes them very vulnerable to damage as well.

One common way for BGA chips to become damaged is called “pad cratering“, where the copper pad on the package’s substrate (basically a wafer-thin circuit board) separates and leaves behind a crater.

Continue reading

eMMC Adventures, Episode 3: Building a custom adapter to use cheap eMMC-based 32GB SSD modules

As seen on Hackaday!

While on my quest for more eMMC-based storage devices, I stumbled upon a few devices that piqued my interest: eMMC-based SATA SSDs! I found two models of particular interest: Dell had M.2 modules with a 2.5″ adapter, and HP had custom boards intended for use in cheap laptops (for example, the HP 14-an012nr). Although the former was easier for me to use (but not acquire), I will be focusing on the latter in this blog post.
Continue reading

eMMC Adventures, Episode 2: Resurrecting a dead Intel Atom-based tablet by replacing failed eMMC storage

As seen on Hackaday!

Recently, I purchased a cheap Intel Atom-based Windows 8 tablet (the DigiLand DL801W) that was being sold at a very low price ($15 USD, although the shipping to Canada negated much of the savings) because it would not boot into Windows – rather, it would only boot into the UEFI shell and cannot be interacted with without an external USB keyboard/mouse.

The patient, er, tablet

The tablet in question is a DigiLand DL801W (identified as a Lightcomm DL801W in the UEFI/BIOS data). It uses an Intel Atom Z3735F – a 1.33GHz quad-core tablet SoC (system-on-chip), 16GB of eMMC storage and a paltry 1GB of DDR3L-1333 SDRAM. It sports a 4500 mAh single-cell Li-ion battery, an 8″ 800×1200 display, 802.11b/g/n Wi-Fi using an SDIO chipset, two cameras, one microphone, mono speaker, stereo headphone jack and a single micro-USB port with USB On-The-Go support (this allows the port to act as a USB host port, allowing connections with standard USB devices like keyboards, mice, and USB drives).

Continue reading

eMMC Adventures, Episode 1: Building my own 64GB memory card with a $6 eMMC chip

As seen on Hackaday!

There’s always some electronics topic that I end up focusing all my efforts on (at least for a certain time), and that topic is now eMMC NAND Flash memory.


eMMC (sometimes shown as e.MMC or e-MMC) stands for Embedded MultiMediaCard; some manufacturers create their own name like SanDisk’s iNAND or Hynix’s e-NAND. It’s a very common form of Flash storage in smartphones and tablets, even lower-end laptops. The newer versions of the eMMC standard (4.5, 5.0 and 5.1) have placed greater emphasis on random small-block I/O (IOPS, or Input/Output operations per second; eMMC devices can now provide SSD-like performance (>10 MB/s 4KB read/write) without the higher cost and power consumption of a full SATA- or PCIe-based SSD.

MMC and eMMC storage is closely related to the SD card standard everyone knows today. In fact, SD hosts will often be able to use MMC devices without modification (electrically, they are the same, but software-wise SD has a slightly different feature set; for example SD cards have CPRM copy protection but lack the MMC’s TRIM and Secure Erase commands. The “e” in eMMC refers to the fact that the memory is a BGA chip directly soldered (embedded) to the motherboard (this also prevents it from being easily upgraded without the proper tools and know-how.

Continue reading

Ramble: Fixstars’ 6TB SATA SSD – is it a thing?

If you know me personally, you’ll know that I absolutely love SSDs. Every PC I own has one, and I can’t stand to use a computer that runs off an HDD anymore. Naturally, when I read about a 6 TERABYTE SSD coming out, it piqued my curiosity.

Photo is owned by Fixstars and is not my property. Retrieved from http://www.fixstars.com/en/news/wp-content/uploads/2015/05/SSD-6000M.png

Official SSD-6000M promotional photo, taken from Fixstars’ press release

A Japanese company by the name of Fixstar has recently announced the world’s first 6TB SATA-based SSD. Although 2.5″ SSDs in such a capacity range already exist, they’re SAS (Serial Attached SCSI) based which limits them primarily to server/datacenter usage. According to Fixstars’ press release, their SSD-6000M supports sequential read speeds of 540 MB/s, and sequential write speeds of 520 MB/s, which is on par with most modern SATA III (6 Gbps) SSDs on the market today.


However, after reading a bit online, I’m beginning to have some concerns about the drive’s real-world performance. One thing that is rather worrying is that the company has only mentioned sequential I/O speeds and has said nothing on random I/O or read/write latency; although SSDs do have much better sequential speeds than their mechanical spinning counterparts, they really shine when it comes to random I/O (which makes up much of a computer’s typical day-to-day usage). In the early, early days of SSDs, manufacturers cared only about sequential I/O and it resulted in some SSDs that were absolutely terrible when it came to random I/O (fun fact: I once had an early SSD, the Patriot PS-100, and its performance was so bad that it actually turned me off of SSDs for a few years, so I know how bad such unoptimized SSDs can perform).


The SSD appears to be made up of 52 eMMC (embedded MultiMediaCard) chips in a sort of RAID 0 configuration and an FPGA (field-programmable gate array) as the main controller. In layman’s terms, this SSD is literally made up of a bunch of SD cards “strapped” together with a chip so that it appears as one single drive. In that sense, one can make a similar solution using a board like this, which parallels multiple microSD cards to act as a single ‘SSD’.

Image retrieved from Amazon (http://ecx.images-amazon.com/images/I/51y0QqWL5sL.jpg)

The consumer equivalent of the SSD-6000M: SD cards and a controller chip. You can even get them from Amazon.


I’m wary of how well this SSD is going to take off. It could end up being a tremendous success, but it’ll certainly be out of the reach of the consumer market – either by its potentially poor random I/O performance, or its price (apparently it will cost well over $6000 USD).

Review of SanDisk Extreme CompactFlash 32GB (SDCFXS-032G)

After my previous review of a Silicon Power 8GB CompactFlash memory card, I was looking around for more CF cards to review, in the hopes of finding a higher-performing card with S.M.A.R.T. health reporting and the ability of acting as a “fixed disk” (that is, identifying to the system as a hard drive rather than a removable disk), and decided to purchase this memory card from Amazon.

Advertised specifications

The card’s specifications indicate that the CompactFlash card is capable of 120MB/s sequential read and 60MB/s sequential write speeds, has a lifetime warranty and comes with a license key for a 1-year subscription to their RescuePRO data recovery software. It is advertised to have internal RTV (room-temperature vulcanization) silicone potting, has an operational temperature range of -25 to 85 degrees Celsius (-13 to 185 Fahrenheit), and uses their “ESP (Enhanced Super-Parallel) Technology” which I presume is some sort of proprietary multi-channel controller, and is UDMA 7 (167 MB/s maximum interface speed) capable.

Benchmark – Setup

To connect the card to my computer, I used a CompactFlash-to-IDE converter and a Marvell 88SE9128-based SATA/PATA host bus adapter. This allows me to use up to UDMA 6 (133 MB/s maximum interface speed) as UDMA 7 is basically restricted to cameras as it’s only part of the CompactFlash official specifications.

Benchmark – CrystalDiskMark

For this test, I manually zero-filled the card using Hard Disk Sentinel, formatted it with exFAT, then ran CrystalDiskMark, set to 3 runs with a 500MB file size using random data, all zeros (0x00), and all ones (0xFF).

Data Type Test Read (MB/s) Write (MB/s) IOPS Read IOPS Write
Random Sequential 103.2 52.45
512K Random 99.55 29.57
4K Random (QD1) 11.37 0.916 2775.2 223.6
4K Random (QD32) 17.24 1.413 4208.2 344.9
All 0 (0x00) Sequential 104.3 54.25
512K Random 98.27 31.22
4K Random (QD1) 11.36 1.1 2773.3 268.5
4K Random (QD32) 17.39 1.263 4244.5 308.4
All 1 (0xFF) Sequential 104.5 53.95
512K Random 98.05 25.84
4K Random (QD1) 11.19 1.112 2733 271.4
4K Random (QD32) 17.32 1.437 4229.3 351

It appears that there is no significant difference between the tests depending on what data was used for the benchmark.

Benchmark – AS SSD

As with CrystalDiskMark, I zeroed out the card and formatted it as exFAT before running the test.

Test Read Write
Sequential 99.70 MB/s 46.13 MB/s
4K 11.40 MB/s 0.74 MB/s
4K 64 Thread 12.80 MB/s 1.03 MB/s
Access Time 0.389 ms 5.504 ms
Score 34 6

Benchmark – Hard Disk Sentinel

I ran three separate benchmarks with Hard Disk Sentinel’s Surface Test feature, using the read and write (both empty and random data) tests, and used the Random Seek Test to measure the card’s responsiveness after filling it with empty and random data.

Test Speed
Read 0x00 95.20 MB/s
Read Random 97.30 MB/s
Write 0x00 49.81 MB/s
Write Random 49.04 MB/s
Seek Time 0x00 0.35 ms
Seek Time Random 0.37 ms

Once again, there does not appear to be any appreciable difference between an empty (zeroed-out) or full card.

Analysis – HWiNFO64

Now that the benchmarks are out of the way, let’s take a look at the card and what it can (and can’t) do. Let’s take a look at the details of the drive…

The card shows up as a regular IDE drive in HWiNFO, and has information about its CHS (Cylinder-Head-Sector) geometries and supported I/O interface speeds. Here we can see the card supports up to UDMA 7 but is running at UDMA 6 as because it is connected to a PC IDE bus.

Now for the kicker: Does the drive identify itself as a fixed or removable disk? Cross your fingers…

NOPE! The SanDisk Extreme CompactFlash card does NOT identify as a fixed disk, but instead as a removable drive. This means that the hopes of using this as a bootable Windows disk are now out the window. [ba-dum-tssh!]

Analysis – Hard Disk Sentinel

Looking at the Overview tab in HDS, something weird is happening. It states that “the hard disk status is PERFECT” yet it has no health or performance percentages available. If I open the Information tab, I can see that the SanDisk Extreme CompactFlash card does NOT support S.M.A.R.T. health reporting. Bummer. Additionally, it appears that Windows does not like removable IDE drives that lack S.M.A.R.T. and instead report garbage data (or data mirrored from another drive in the system).

Looking further inside the Information tab, we can see the features that the memory card does support. It supports DMA, Ultra DMA, APM (advanced power management), write caching, 48-bit LBA (logical block address) addressing, IORDY (flow control), a NOP (no-operation) command, and has the CFA (CompactFlash Association) feature set.

Since the card reported that it supported APM, I tried to enable it but the card refused to accept the command.


Overall, I like this card quite a bit. It has fast sequential I/O and a respectable random read speed. However, this is soiled by the fact that the card is configured to show up as a removable disk, which renders the card unusable as a Windows boot drive, and the lack of S.M.A.R.T. health and temperature reporting makes me a bit uneasy as I cannot track the card’s program-erase cycle count during use.

Oh well. Looks like the hunt for a fast, fixed-disk CompactFlash card continues…

Teardown/review of Silicon Power 8GB 200x CompactFlash memory card

Hooray for nice hand-me-down SLR cameras! I finally have a better camera than the one built into my (now ancient) Samsung Galaxy S II that I use for pictures on this blog. The camera, a Canon EOS 50D, had an 8GB CompactFlash card that I was preparing to erase and reuse, and had problems trying to read out the card’s contents; a few stubborn files would refuse to copy and Explorer would simply hang until I restarted the program or unplugged the card. Additionally, when using my Hard Disk Sentinel program to do a surface scan, it too would freeze when reading a certain sector on the card.

Instead of using a USB-to-CompactFlash adapter (I could not find my card reader and have not seen it for over a year now, come to think of it) I used a CompactFlash-to-PATA adapter, then a PATA-to-SATA adapter so I could directly hook up the card to my computer. In addition to having greater theoretical throughput, it allows me to view the S.M.A.R.T. diagnostic data that the card provides.

Memory card issues and performance

The diagnostic information doesn’t really provide any insight into the health of the card; none of the S.M.A.R.T. attributes are listed as critical, and many of them are listed as vendor-specific. Oh well, at least it gave me some sort of information…

After finding a copy of the card’s contents on my home server (I seem to have previously backed up the card before the corruption occurred but didn’t recall doing so until I had raked through some of my archives), I decided I’d do a full card erase and see if it would cause the card to be usable again. I called up the Surface Test in Hard Disk Sentinel and used its surface-write tool to erase the user-accessible area of the card. A few blocks seemed to write dramatically slower than the rest and repeated write tests did not resolve their sluggishness; I call shenanigans with the memory card’s controller and its reluctance in reallocating problematic sectors…

The card itself isn’t very fast. The sequential I/O of the card is good enough for casual photography, but I would definitely not use this card in an embedded system that uses a CompactFlash as a sort of mini-SSD; even though it shows up in my system as a hard drive (non-removable), its random I/O is quite sluggish and its random write speed is worse than that of a standard hard disk drive.


The card itself is a sandwich of aluminum plates, a plastic case and the PCB assembly that holds the controller, Flash memory and the CompactFlash connector. A hobby knife run under the aluminum plate was able to separate the plate from the plastic body; some glue and a couple clips were the only things holding the card together.

The card’s controller is a Phison PS3006, which sports a PCMCIA (and therefore CompactFlash) interface with True IDE (or plain PATA) support. It contains an 8051 microcontroller core with a few components to assist with interfacing with the Flash memory, such as a hardware ECC (error correction code) engine and a small amount of SRAM for a buffer.

The datasheet for the PS3006 doesn’t provide information on the S.M.A.R.T. attributes, nor does it indicate what type of Flash wear-leveling is provided. Given the controller’s limited computing capabilities, I’m thinking it uses a less-complex but less-reliable form of wear leveling, known as dynamic wear leveling (see Micron’s application note for more information). It’s less capable of dealing with memory wearout, but doesn’t require the computing overhead of static wear leveling (which proper SSD controllers use to keep performance up).

The memory is an Intel 29F32G08AAMD2 device, which is an asynchronous MLC NAND Flash memory chip. There are two installed on this card with another two footprints on the PCB being unpopulated, suggesting that the 16GB version of this card has all four footprints populated.


Given the simplicity of the card, I don’t really have much else to add about this card. Either way, it’s lost my trust with regards to holding my photos. I bought a NOS Disk 16GB CF card from Amazon as well as a SanDisk Extreme 32GB, and plan to use the latter to hold my photos, with the former mainly being a simple curiosity of the construction of a card from a lesser-known manufacturer. Hopefully those will also provide S.M.A.R.T. data, as I prefer Flash-based storage devices with some sort of S.M.A.R.T. data capability. (Is it an insatiable thirst for knowledge? A means of doing regular ‘check-ups’ on my storage device? Probably the latter, but maaayyyybe the former as well. 🙂 )