Review of SanDisk Extreme CompactFlash 32GB (SDCFXS-032G)

After my previous review of a Silicon Power 8GB CompactFlash memory card, I was looking around for more CF cards to review, in the hopes of finding a higher-performing card with S.M.A.R.T. health reporting and the ability of acting as a “fixed disk” (that is, identifying to the system as a hard drive rather than a removable disk), and decided to purchase this memory card from Amazon.

Advertised specifications

The card’s specifications indicate that the CompactFlash card is capable of 120MB/s sequential read and 60MB/s sequential write speeds, has a lifetime warranty and comes with a license key for a 1-year subscription to their RescuePRO data recovery software. It is advertised to have internal RTV (room-temperature vulcanization) silicone potting, has an operational temperature range of -25 to 85 degrees Celsius (-13 to 185 Fahrenheit), and uses their “ESP (Enhanced Super-Parallel) Technology” which I presume is some sort of proprietary multi-channel controller, and is UDMA 7 (167 MB/s maximum interface speed) capable.

Benchmark – Setup

To connect the card to my computer, I used a CompactFlash-to-IDE converter and a Marvell 88SE9128-based SATA/PATA host bus adapter. This allows me to use up to UDMA 6 (133 MB/s maximum interface speed) as UDMA 7 is basically restricted to cameras as it’s only part of the CompactFlash official specifications.

Benchmark – CrystalDiskMark

For this test, I manually zero-filled the card using Hard Disk Sentinel, formatted it with exFAT, then ran CrystalDiskMark, set to 3 runs with a 500MB file size using random data, all zeros (0x00), and all ones (0xFF).

Data Type Test Read (MB/s) Write (MB/s) IOPS Read IOPS Write
Random Sequential 103.2 52.45
512K Random 99.55 29.57
4K Random (QD1) 11.37 0.916 2775.2 223.6
4K Random (QD32) 17.24 1.413 4208.2 344.9
All 0 (0x00) Sequential 104.3 54.25
512K Random 98.27 31.22
4K Random (QD1) 11.36 1.1 2773.3 268.5
4K Random (QD32) 17.39 1.263 4244.5 308.4
All 1 (0xFF) Sequential 104.5 53.95
512K Random 98.05 25.84
4K Random (QD1) 11.19 1.112 2733 271.4
4K Random (QD32) 17.32 1.437 4229.3 351

It appears that there is no significant difference between the tests depending on what data was used for the benchmark.

Benchmark – AS SSD

As with CrystalDiskMark, I zeroed out the card and formatted it as exFAT before running the test.

Test Read Write
Sequential 99.70 MB/s 46.13 MB/s
4K 11.40 MB/s 0.74 MB/s
4K 64 Thread 12.80 MB/s 1.03 MB/s
Access Time 0.389 ms 5.504 ms
Score 34 6

Benchmark – Hard Disk Sentinel

I ran three separate benchmarks with Hard Disk Sentinel’s Surface Test feature, using the read and write (both empty and random data) tests, and used the Random Seek Test to measure the card’s responsiveness after filling it with empty and random data.

Test Speed
Read 0x00 95.20 MB/s
Read Random 97.30 MB/s
Write 0x00 49.81 MB/s
Write Random 49.04 MB/s
Seek Time 0x00 0.35 ms
Seek Time Random 0.37 ms

Once again, there does not appear to be any appreciable difference between an empty (zeroed-out) or full card.

Analysis – HWiNFO64

Now that the benchmarks are out of the way, let’s take a look at the card and what it can (and can’t) do. Let’s take a look at the details of the drive…

The card shows up as a regular IDE drive in HWiNFO, and has information about its CHS (Cylinder-Head-Sector) geometries and supported I/O interface speeds. Here we can see the card supports up to UDMA 7 but is running at UDMA 6 as because it is connected to a PC IDE bus.

Now for the kicker: Does the drive identify itself as a fixed or removable disk? Cross your fingers…

NOPE! The SanDisk Extreme CompactFlash card does NOT identify as a fixed disk, but instead as a removable drive. This means that the hopes of using this as a bootable Windows disk are now out the window. [ba-dum-tssh!]

Analysis – Hard Disk Sentinel

Looking at the Overview tab in HDS, something weird is happening. It states that “the hard disk status is PERFECT” yet it has no health or performance percentages available. If I open the Information tab, I can see that the SanDisk Extreme CompactFlash card does NOT support S.M.A.R.T. health reporting. Bummer. Additionally, it appears that Windows does not like removable IDE drives that lack S.M.A.R.T. and instead report garbage data (or data mirrored from another drive in the system).

Looking further inside the Information tab, we can see the features that the memory card does support. It supports DMA, Ultra DMA, APM (advanced power management), write caching, 48-bit LBA (logical block address) addressing, IORDY (flow control), a NOP (no-operation) command, and has the CFA (CompactFlash Association) feature set.

Since the card reported that it supported APM, I tried to enable it but the card refused to accept the command.


Overall, I like this card quite a bit. It has fast sequential I/O and a respectable random read speed. However, this is soiled by the fact that the card is configured to show up as a removable disk, which renders the card unusable as a Windows boot drive, and the lack of S.M.A.R.T. health and temperature reporting makes me a bit uneasy as I cannot track the card’s program-erase cycle count during use.

Oh well. Looks like the hunt for a fast, fixed-disk CompactFlash card continues…

Review, teardown and analysis of Charging Essentials USB wall outlet

(UPDATE: March 2, 2015 – I’ve picked up a pair of the newer tamper-resistant versions of this wall outlet. A review and teardown on that unit is coming up; stay tuned!)
(UPDATE 2: May 29, 2016 – Scratch that on the first tamper-resistant model; it had the same performance as the one mentioned here. Also, Costco has released a 3.1A version of this outlet, and is currently under review.)

About a week ago I bought a set of wall outlets from Costco that integrate two USB charging ports into a standard Decora-type receptacle. It’s marketed to replace your traditional AC adapter, allowing other appliances to be plugged in while charging your portable electronics.

The outlet is made by Omee Electrical Company, but curiously enough this particular model, the OM-USBII, wasn’t listed on their site. The packaging itself bears the name Charging Essentials, with a logo that looks like a USB icon that’s had one Viagra too many. The packaging states that the outlet has:

  • “Two 5VDC 2.1A ports for more efficient charging in less time”
  • “Smarter USB charging with special chip designed to recognize and optimize the charging requirements of your device”
  • “Screw-free wall plate snaps into place for a more clean, modern appearance”

The second note is of particular importance to me. If it’s true, that means it might be using some USB charge port controller like TI’s TPS251x-series chips. But I’m not one to have blind faith in what’s written on the packaging. Let’s rip this sucker apart!

The outlet has a snap-on coverplate which may look sleek but could hamper removal of this outlet later on if needed. I was curious as to why one couldn’t just use a regular screw-on coverplate, and it turns out it’s because the mounting flange doesn’t have any tapped screw holes; you physically can’t use screws on this because the manufacturer didn’t want to go to the effort to make holes that can accept screws!

The casing is held together with four triangle-head screws in a weak attempt to prevent opening of the device. I had a security bit set on hand so this posed no hindrance to me. Upon removing the cover, the outlet seems rather well built. However, after removing the main outlet portion to reveal the AC-DC adapter inside, I quickly rescinded that thought.

The converter seems relatively well-built (at least relative to some crap Chinese power supplies out there). Some thought was put into the safe operation of this device, but there’s almost no isolation between the high and low voltage sides, and the DC side of this adapter is not grounded; the “ground” for the USB ports floats at 60 volts AC with respect to the mains earth pin. The Samxon brand caps are also pretty disappointing.

As for the USB portion of this device, I had to remove some hot glue holding the panel in place. After a few minutes of picking away at the rubbery blob, I was able to pull out the USB ports.

… and I found LIES! DIRTY LIES! There is no USB charge port controller, contrary to what the packaging claims. It just uses a set of voltage dividers to emulate the Apple charger standard, which could break compatibility with some smartphones. Ugh, well let’s put it back together and take a look at it from the performance side of things. At least the USB ports feel pretty solid…

To measure the voltage-current characteristic of the outlet, I rebuilt my bq27510-G3 Li-Ion gas gauge board so it had better handling of high current without affecting my current and voltage measurements. The reason I used this is because the gauge combines a voltmeter and ammeter in one chip, and by using the GaugeStudio software, I could create easy, breezy, beautiful V-I graphs.

Using a Re:load 2 constant-current load, I slowly ramped up the load current while logging the voltage and current data to a CSV file for analysis in Excel.

overall vi graphThis charger’s… okay. It has surprisingly good regulation up to 2.3 amps, but after that point the AC-DC converter basically brickwalls and the voltage plummets to 3 volts. That said, this also means that this outlet is not a set of “two 2.1A USB ports”. You can charge one tablet but you won’t be able to charge a tablet along with another device simultaneously.

Bah, I’ve had it with this wall outlet. Looks like this one’s gonna be returned to Costco in the next few days. This outlet may be adequate for some people, but for me it’s a disappointment.


  • Solid USB ports
  • Good voltage stability (up to 2.3 amps, enough to charge ONE tablet)
  • Apple device compatibility


  • Annoying coverplate design
  • Does not meet rated current output, will not charge 2 tablets or 1 tablet + another device
  • Does NOT have a “smart charging chip” despite being stated on packaging, some devices (eg. BlackBerry) will refuse to charge from these ports
  • Power supply for USB seems cheap
  • USB port is not grounded – if a short-circuit happens inside the power supply it can be a shock hazard to you

Tearing down and analyzing a cheap-ass “Xtreme” $3.50 external phone battery

I was shopping around at this electronics liquidation store and stumbled upon a couple cheap buys: A “1900 mAh” external phone battery and another 4400 mAh pack (which will be the subject of another post and teardown). The batteries were originally priced at $7 and $38 respectively, but they were on sale at half price. For $3.50, I was curious enough about the 1900 mAh battery’s real capacity that I bought it anyway, expecting to be disappointed.

The pack itself is roughly half the size of a typical smartphone and about 1.5 times thicker. The casing itself has no screws; the manufacturer decided it was too expensive to use screws so they simply ultrasonic-welded the case shut. After about half an hour with a plastic spudger tool, I was able to crack the case open.

2014-01-05 00.11.26The soldering quality, surprisingly, is pretty good for a sub-$10 device, save for a bunch of hand-soldered components with flux residue left behind. The circuit board is made up of a battery protection circuit (yes, they actually put one in!), an ME2108A-50 boost converter,  something I’d assume to be a charging circuit, and an LM324 op-amp as a “gas gauge” (if you could even call it that!).

2014-01-05 00.11.36The cell appears to be a thicker version of a typical cell phone battery. It’s similar in size to something like a Nokia BL-5C which is a 1020 mAh cell, and is 5.6 mm thick. The cell in the charger is 7.7 mm thick. The charger’s cell is only 37.5% thicker but should have 190% of the capacity… yeah, no. This is not going to be very promising, given how the spot-welded nickel strips literally fell off the cell when I tried to desolder it from the PCB.

After soldering some 20-gauge solid wire to the terminals and hooking it up to a bq27425-G2A fuel gauge chip, I noticed that it reported that the fully-charged voltage is 4.25 volts. This charger tries to squeeze the most out of the cell by overcharging it! Granted, a Li-Ion cell’s maximum terminal voltage is 4.25 volts but it shouldn’t settle down to this voltage after charging!

1900 mah charger overvoltageAfter performing a few learning cycles to determine capacity and resistance, the cell holds merely 1370 mAh. The internal resistance is about 85 milliohms, which tells me that at least they used a relatively fresh cell in this charger and not just some recycled cell (*cough* UltraFire *cough*).

1900 mah charger graphI knew from the get-go that this battery was going to be a let-down, and I was right. But hey, for $3.50 I get a half-decent 1370 mAh cell and a few scrap chips (no way I’m reusing that battery’s PCB as-is!). But my verdict: Avoid this battery pack if you intend to use it to, I dunno, charge your phone. 😛