Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 4)

“It’s been a long time… How have you been?”

It’s been almost a year since I started my discharge test of the Kentli PH5 Li-ion AA battery, and the battery has lost almost 40% of its capacity due to self-discharge.

The discharge curve has gotten a lot less… linear since the last time I posted a self-discharge update. The battery is down to 62% state-of-charge, and its voltage has dropped down to 3.89 volts. Still, there’s a lot of time left until this battery reaches empty… but when?

I’m no statistician, but doing a linear extrapolation in Excel gives an approximate end date of January 2018, and the SLOPE() function in Excel gives me an average drop of 0.111%/day. Of course, this can easily change over the course of this test, but only time will tell…

Advertisements

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 3)

Aw what, it’s October already? So much for having another blog post in September…
But anyway, “more months, more data!™”

The voltage of the PH5 has dropped down to 4.093 volts as of today (October 1st, 2015), and its State of Charge is now 93%. There’s just enough data to guess the discharge rate of the PH5: with the currently logged data, the PH5 self discharges at approximately 0.103%/day. At this rate, the cell should last years before finally reaching zero. Looks like this will be a very, very long term test…

(At least that would give me more time to procrastinate write blog posts.)

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 2)

After my first self-discharge analysis of the Kentli PH5 Li-ion AA battery, I have collected another month’s worth of data.

The battery’s voltage drop has been surprisingly linear. Although I didn’t get the exact day when the bq27621-G1’s State of Charge readout dropped to 99%, it is quite clear that the state of charge is dropping with a fairly steep curve now. That said, because the battery’s voltage is still far away from the ‘flat region’ of the discharge curve, it is difficult to determine when the battery will discharge itself completely at this time.

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 1)

As an extension to my previous performance analysis of Kentli’s PH5 Li-ion AA battery, I fully charged an unused PH5 and left it on my desk to self-discharge. Every now and then, a Texas Instruments bq27621-G1 fuel gauge is hooked up to the Li-ion battery terminals (in the case of the PH5, the recessed ring around the 1.5V terminal) and the bq27621’s default settings are used to measure the voltage and state of charge.

I started this test on June 18th, 2015 and will keep taking occasional measurements until the protection IC in the PH5 shuts down.

Since the 18th, the voltage dropped from 4.216 volts down to 4.192 volts as of July 6, 2015; the bq27621’s State of Charge reading remains at 100% for the time being. The voltage drop has been fairly linear so far, but I expect it to taper off as the battery discharges to the Li-ion cell’s “flat region”, and only after that do I expect the cell’s voltage to decline more rapidly.

Review, teardown and analysis of Charging Essentials USB wall outlet

(UPDATE: March 2, 2015 – I’ve picked up a pair of the newer tamper-resistant versions of this wall outlet. A review and teardown on that unit is coming up; stay tuned!)
(UPDATE 2: May 29, 2016 – Scratch that on the first tamper-resistant model; it had the same performance as the one mentioned here. Also, Costco has released a 3.1A version of this outlet, and is currently under review.)

About a week ago I bought a set of wall outlets from Costco that integrate two USB charging ports into a standard Decora-type receptacle. It’s marketed to replace your traditional AC adapter, allowing other appliances to be plugged in while charging your portable electronics.

The outlet is made by Omee Electrical Company, but curiously enough this particular model, the OM-USBII, wasn’t listed on their site. The packaging itself bears the name Charging Essentials, with a logo that looks like a USB icon that’s had one Viagra too many. The packaging states that the outlet has:

  • “Two 5VDC 2.1A ports for more efficient charging in less time”
  • “Smarter USB charging with special chip designed to recognize and optimize the charging requirements of your device”
  • “Screw-free wall plate snaps into place for a more clean, modern appearance”

The second note is of particular importance to me. If it’s true, that means it might be using some USB charge port controller like TI’s TPS251x-series chips. But I’m not one to have blind faith in what’s written on the packaging. Let’s rip this sucker apart!

The outlet has a snap-on coverplate which may look sleek but could hamper removal of this outlet later on if needed. I was curious as to why one couldn’t just use a regular screw-on coverplate, and it turns out it’s because the mounting flange doesn’t have any tapped screw holes; you physically can’t use screws on this because the manufacturer didn’t want to go to the effort to make holes that can accept screws!

The casing is held together with four triangle-head screws in a weak attempt to prevent opening of the device. I had a security bit set on hand so this posed no hindrance to me. Upon removing the cover, the outlet seems rather well built. However, after removing the main outlet portion to reveal the AC-DC adapter inside, I quickly rescinded that thought.

The converter seems relatively well-built (at least relative to some crap Chinese power supplies out there). Some thought was put into the safe operation of this device, but there’s almost no isolation between the high and low voltage sides, and the DC side of this adapter is not grounded; the “ground” for the USB ports floats at 60 volts AC with respect to the mains earth pin. The Samxon brand caps are also pretty disappointing.

As for the USB portion of this device, I had to remove some hot glue holding the panel in place. After a few minutes of picking away at the rubbery blob, I was able to pull out the USB ports.

… and I found LIES! DIRTY LIES! There is no USB charge port controller, contrary to what the packaging claims. It just uses a set of voltage dividers to emulate the Apple charger standard, which could break compatibility with some smartphones. Ugh, well let’s put it back together and take a look at it from the performance side of things. At least the USB ports feel pretty solid…

To measure the voltage-current characteristic of the outlet, I rebuilt my bq27510-G3 Li-Ion gas gauge board so it had better handling of high current without affecting my current and voltage measurements. The reason I used this is because the gauge combines a voltmeter and ammeter in one chip, and by using the GaugeStudio software, I could create easy, breezy, beautiful V-I graphs.

Using a Re:load 2 constant-current load, I slowly ramped up the load current while logging the voltage and current data to a CSV file for analysis in Excel.

overall vi graphThis charger’s… okay. It has surprisingly good regulation up to 2.3 amps, but after that point the AC-DC converter basically brickwalls and the voltage plummets to 3 volts. That said, this also means that this outlet is not a set of “two 2.1A USB ports”. You can charge one tablet but you won’t be able to charge a tablet along with another device simultaneously.

Bah, I’ve had it with this wall outlet. Looks like this one’s gonna be returned to Costco in the next few days. This outlet may be adequate for some people, but for me it’s a disappointment.

Pros:

  • Solid USB ports
  • Good voltage stability (up to 2.3 amps, enough to charge ONE tablet)
  • Apple device compatibility

Cons:

  • Annoying coverplate design
  • Does not meet rated current output, will not charge 2 tablets or 1 tablet + another device
  • Does NOT have a “smart charging chip” despite being stated on packaging, some devices (eg. BlackBerry) will refuse to charge from these ports
  • Power supply for USB seems cheap
  • USB port is not grounded – if a short-circuit happens inside the power supply it can be a shock hazard to you