Completed: Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 6)

Looking for the teardown or how well the Kentli PH5 battery performs under load? Click the links to learn more.

It’s finally happened – the self-discharge test of the Kentli PH5 Li-ion AA battery has finally come to an end… and it only took almost 3 years!

 

april 29 2018 stats

Kentli PH5 self-discharge test statistics

Self-Discharge Rate

I never anticipated this test would run for so long; although the PH5 did not have a manufacturer-specified self-discharge rate, marketing materials suggested that the batteries had a storage life that was “3-5 times longer than Ni-MH batteries”. Wikipedia states that after one year, normal Ni-MH batteries lose about 50% of their capacity, and low-self-discharge (LSD) Ni-MH batteries lose 15-30%.

Correlating this with the data collected from the Texas Instruments bq27621-G1 fuel gauge, the battery lost 40% of its charge within one year, placing it in between the standard and LSD Ni-MH chemistries. Using Excel’s SLOPE() function, the self-discharge rate was calculated to be 0.10108%/day.

Experimental Improvements

There is some error in State of Charge measurement when using the bq27621 fuel gauge. As it uses the Impedance Track algorithm, open-circuit voltage is used to determine a battery’s state of charge upon gauge initialization. This OCV curve is chemistry-specific, with slightly different formulations requiring different chemistry ID codes. The bq27621 has a fixed Chemistry ID of 0x1202 (LiCoO2/LCO cathode, carbon anode), but experimental data revealed a better-matched Chemistry ID of 0x3107, 0x1224 or 0x0380; the first two chemistries pointed towards a LiMnO4/LMO cathode chemistry which I was somewhat skeptical of, but did not test further.

Using another gauge with a different, programmable Chemistry ID could have led to a straighter SoC curve. This wouldn’t be too difficult to reproduce, as the battery voltage can be fed to the gauge in order to recompute the state of charge. Additionally, the bq27621 has a Terminate Voltage of 3.2 volts (the gauge considers this voltage to be the point in which it reads 0% SoC), which is higher than the battery’s protection voltage of 2.4 volts (granted, there is very little charge difference in this area of the discharge curve).

My test setup was not temperature-controlled; I live in a house without air conditioning and room temperatures can vary from 15 to 35 degrees C (59 to 95 degrees F), depending on the season. However, I doubt that this would have had too much impact on discharge rate, and this would better represent real-life scenarios where a constant temperature may not necessarily be guaranteed.

Finally, this test was performed on a new, uncycled battery. I suspect the discharge rate would be significantly higher on an aged battery that was subject to a lot of charge cycles and day-to-day wear.

Conclusion

This was the longest-running experiment I’ve ever conducted on this blog. The Kentli PH5’s self-discharge rate lasts longer than a standard Ni-MH battery, but a LSD (low-self-discharge) Ni-MH battery would still last longer, albeit with a lower terminal voltage. The battery, when new, should be expected to last almost 3 years without a charge (although there won’t be any charge left by then); it will hold about 60% of its capacity after 1 year of storage.

To download a copy of the self-discharge test data, click here.

Advertisements

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 5)

It’s amazing – 894 days (and counting) have elapsed since the start of my long-term experiment, documenting the real-world self-discharge behavior of the Kentli 1.5V Li-ion AA battery… and it’s still ongoing! How have things fared so far?

Surprisingly, even after spending nearly 30 months on the shelf, there is still 12% capacity left. The voltage has dropped from 4.216 to 3.692 volts according to my bq27621 Li-ion fuel gauge; the State of Charge (SoC) has dropped 50% since my last update.

november 28 2017 stats

The linear end date prediction is holding pretty steady, having changed slightly to an estimated 0% charge date somewhere in February 2018.

On that note, I’m impressed by how much attention this little battery has received, even years after my initial review. Every day I see a handful of views checking out the teardown and performance metrics, and there seems to be hardly any sign that this will change anytime soon. To everyone who stops by to check out my blog posts: thank you! 🙂

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 4)

“It’s been a long time… How have you been?”

It’s been almost a year since I started my discharge test of the Kentli PH5 Li-ion AA battery, and the battery has lost almost 40% of its capacity due to self-discharge.

The discharge curve has gotten a lot less… linear since the last time I posted a self-discharge update. The battery is down to 62% state-of-charge, and its voltage has dropped down to 3.89 volts. Still, there’s a lot of time left until this battery reaches empty… but when?

I’m no statistician, but doing a linear extrapolation in Excel gives an approximate end date of January 2018, and the SLOPE() function in Excel gives me an average drop of 0.111%/day. Of course, this can easily change over the course of this test, but only time will tell…

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 3)

Aw what, it’s October already? So much for having another blog post in September…
But anyway, “more months, more data!â„¢”

The voltage of the PH5 has dropped down to 4.093 volts as of today (October 1st, 2015), and its State of Charge is now 93%. There’s just enough data to guess the discharge rate of the PH5: with the currently logged data, the PH5 self discharges at approximately 0.103%/day. At this rate, the cell should last years before finally reaching zero. Looks like this will be a very, very long term test…

(At least that would give me more time to procrastinate write blog posts.)

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 2)

After my first self-discharge analysis of the Kentli PH5 Li-ion AA battery, I have collected another month’s worth of data.

The battery’s voltage drop has been surprisingly linear. Although I didn’t get the exact day when the bq27621-G1’s State of Charge readout dropped to 99%, it is quite clear that the state of charge is dropping with a fairly steep curve now. That said, because the battery’s voltage is still far away from the ‘flat region’ of the discharge curve, it is difficult to determine when the battery will discharge itself completely at this time.

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 1)

As an extension to my previous performance analysis of Kentli’s PH5 Li-ion AA battery, I fully charged an unused PH5 and left it on my desk to self-discharge. Every now and then, a Texas Instruments bq27621-G1 fuel gauge is hooked up to the Li-ion battery terminals (in the case of the PH5, the recessed ring around the 1.5V terminal) and the bq27621’s default settings are used to measure the voltage and state of charge.

I started this test on June 18th, 2015 and will keep taking occasional measurements until the protection IC in the PH5 shuts down.

Since the 18th, the voltage dropped from 4.216 volts down to 4.192 volts as of July 6, 2015; the bq27621’s State of Charge reading remains at 100% for the time being. The voltage drop has been fairly linear so far, but I expect it to taper off as the battery discharges to the Li-ion cell’s “flat region”, and only after that do I expect the cell’s voltage to decline more rapidly.

Review, teardown and analysis of Charging Essentials USB wall outlet

(UPDATE: March 2, 2015 – I’ve picked up a pair of the newer tamper-resistant versions of this wall outlet. A review and teardown on that unit is coming up; stay tuned!)
(UPDATE 2: May 29, 2016 – Scratch that on the first tamper-resistant model; it had the same performance as the one mentioned here. Also, Costco has released a 3.1A version of this outlet, and is currently under review.)

About a week ago I bought a set of wall outlets from Costco that integrate two USB charging ports into a standard Decora-type receptacle. It’s marketed to replace your traditional AC adapter, allowing other appliances to be plugged in while charging your portable electronics.

The outlet is made by Omee Electrical Company, but curiously enough this particular model, the OM-USBII, wasn’t listed on their site. The packaging itself bears the name Charging Essentials, with a logo that looks like a USB icon that’s had one Viagra too many. The packaging states that the outlet has:

  • “Two 5VDC 2.1A ports for more efficient charging in less time”
  • “Smarter USB charging with special chip designed to recognize and optimize the charging requirements of your device”
  • “Screw-free wall plate snaps into place for a more clean, modern appearance”

The second note is of particular importance to me. If it’s true, that means it might be using some USB charge port controller like TI’s TPS251x-series chips. But I’m not one to have blind faith in what’s written on the packaging. Let’s rip this sucker apart!

The outlet has a snap-on coverplate which may look sleek but could hamper removal of this outlet later on if needed. I was curious as to why one couldn’t just use a regular screw-on coverplate, and it turns out it’s because the mounting flange doesn’t have any tapped screw holes; you physically can’t use screws on this because the manufacturer didn’t want to go to the effort to make holes that can accept screws!

The casing is held together with four triangle-head screws in a weak attempt to prevent opening of the device. I had a security bit set on hand so this posed no hindrance to me. Upon removing the cover, the outlet seems rather well built. However, after removing the main outlet portion to reveal the AC-DC adapter inside, I quickly rescinded that thought.

The converter seems relatively well-built (at least relative to some crap Chinese power supplies out there). Some thought was put into the safe operation of this device, but there’s almost no isolation between the high and low voltage sides, and the DC side of this adapter is not grounded; the “ground” for the USB ports floats at 60 volts AC with respect to the mains earth pin. The Samxon brand caps are also pretty disappointing.

As for the USB portion of this device, I had to remove some hot glue holding the panel in place. After a few minutes of picking away at the rubbery blob, I was able to pull out the USB ports.

… and I found LIES! DIRTY LIES! There is no USB charge port controller, contrary to what the packaging claims. It just uses a set of voltage dividers to emulate the Apple charger standard, which could break compatibility with some smartphones. Ugh, well let’s put it back together and take a look at it from the performance side of things. At least the USB ports feel pretty solid…

To measure the voltage-current characteristic of the outlet, I rebuilt my bq27510-G3 Li-Ion gas gauge board so it had better handling of high current without affecting my current and voltage measurements. The reason I used this is because the gauge combines a voltmeter and ammeter in one chip, and by using the GaugeStudio software, I could create easy, breezy, beautiful V-I graphs.

Using a Re:load 2 constant-current load, I slowly ramped up the load current while logging the voltage and current data to a CSV file for analysis in Excel.

overall vi graphThis charger’s… okay. It has surprisingly good regulation up to 2.3 amps, but after that point the AC-DC converter basically brickwalls and the voltage plummets to 3 volts. That said, this also means that this outlet is not a set of “two 2.1A USB ports”. You can charge one tablet but you won’t be able to charge a tablet along with another device simultaneously.

Bah, I’ve had it with this wall outlet. Looks like this one’s gonna be returned to Costco in the next few days. This outlet may be adequate for some people, but for me it’s a disappointment.

Pros:

  • Solid USB ports
  • Good voltage stability (up to 2.3 amps, enough to charge ONE tablet)
  • Apple device compatibility

Cons:

  • Annoying coverplate design
  • Does not meet rated current output, will not charge 2 tablets or 1 tablet + another device
  • Does NOT have a “smart charging chip” despite being stated on packaging, some devices (eg. BlackBerry) will refuse to charge from these ports
  • Power supply for USB seems cheap
  • USB port is not grounded – if a short-circuit happens inside the power supply it can be a shock hazard to you