Discreet Quality: Review of the sketchiest-looking 512GB Lexar SDXC card

It’s amazing how much Flash-based storage technology has advanced in the last few years, especially considering how much prices have dropped.

Naturally, when it comes to speed, capacity and price, consumers tend to look for the lowest price; as manufacturers race towards the bottom line, many will take the low road and sell counterfeit goods. This is especially prevalent in the NAND Flash market, and online marketplaces like eBay, AliExpress and even Amazon are fraught with countless fake storage devices that claim high capacities at too-good-to-be-true prices. It’s not uncommon to see unrealistic capacities sold for a few tens of dollars, but what the customer ends up receiving is a storage device with a falsified capacity that will pass a simple copy-paste test but will corrupt itself with extended use.

While browsing eBay for some deals on some Flash storage, I happened upon a very strange-looking 512GB SDXC card. It was listed as an OEM Lexar card but had no labels, selling for an unprecedentedly low price of $60 USD (the card would cost several times more at normal retail outlets). On the outside, everything about the card’s exterior seems to raise a red flag that the card is not to be trusted.

Lexar OEM 512GB Listing

eBay listing of the Lexar OEM 512GB SDXC card

Upon closer inspection, there are some hints that one shouldn’t always judge a book – er, card – by its cover. The laser-etched markings might look like cryptic gibberish to the layperson, but the markings “SM2702BAC” and “L95B” have actual meanings; the SM2702 is an SD card controller by Silicon Motion, and L95B refers to the 16nm generation of MLC NAND Flash by Micron, which owns the Lexar brand (but unfortunately is being discontinued). The seller also says that the cards have been tested, which is reassuring.

I decided to take the plunge and plunk down about $80 USD including shipping (or $105 CAD at the time) and buy a card for myself.

A Closer Look

After waiting a few weeks, the card showed up in my mailbox. The seller did a very good job packaging it, even placing the card in an ESD shielding bag before wrapping it with foam and placing it in a bubble mailer (it’s much better than the plastic wrap I’ve had some used i7 CPUs by a huge amount).

 

The card looks very plain, with the top label area lacking any labeling, and the same laser-etched markings on the back. The card’s contacts indicate that it has been placed in a card reader a few times before (presumably for testing).

Card Identification

I used my old Gateway M-7305u laptop with Kali Linux to see what information the card reports. These older laptops have true SDA (SD Association) compliant card slots, so they will identify as an actual SD card instead of a USB drive like with many modern laptops; in Linux these show up as devices like /dev/mmcblk0 instead of /dev/sda. By using the “dmesg -wH” command I can read the kernel logs once the card is connected to the computer.

[Jan24 10:52] mmc0: new high speed SDXC card at address 59b4
[ +0.094917] mmcblk0: mmc0:59b4       483 GiB 
[ +0.001111] mmcblk0: p1

The card reports a capacity of 483 GiB (that’s binary gigabytes, or 519.6 decimal – a.k.a. “weasel” – gigabytes), but the SD card name is ”     ” – five ASCII spaces. Everything about the card superficially rings alarm bells! However, I wasn’t phased, and decided to try the card in my Kingston FCR-HS4 USB 3.0 card reader, which uses the Realtek RTS5321 chipset.

Lexar OEM 512GB Partition

OEM Lexar 512GB SDXC card in Disk Management

Examining the card in Windows shows that the card was formatted as exFAT with a drive name of “SDXC”, suggesting it may have been formatted by the seller with the SD Formatter tool. Looking at the raw sector data in Hard Disk Sentinel suggests that the seller indeed do a full capacity test, as the data patterns match that of the program H2testw, an excellent tool for detecting fake Flash memory. This is a good sign – the seller did their due diligence and by this point I already had a good feeling that the card is genuine.

However, I wanted to test this for myself, so I ran the H2testw utility myself and let it run on the card. The write speed remained consistent throughout, which is a good indication that the card is not overwriting memory locations like in fake Flash storage (the card did get uncomfortably hot during the process, however). It took four hours to complete the write and read test, but everything came out clean – the card is genuine, even when every other sign says otherwise!

Lexar 512GB OEM H2testw

H2testw verifying that the OEM Lexar card’s 512GB capacity is genuine

Performance

With the card verified, it was time to put it to the test.

CrystalDiskMark

The card showed sequential read speeds of 92.03 MB/s and sequential write speeds of 60.45 MB/s; the sequential write speed coincides with the seller’s rating of 400x (400 * 150 kB/s = 60 MB/s).

The random 4K I/O performance isn’t great, especially with writes, but it isn’t bad either. The card managed 4K random read speeds of 6.644 MB/s (1700.9 IOPS) and 4K random write speeds of 0.671 MB/s (171.8 IOPS).

Lexar 512GB OEM Benchmark

Benchmark of the 512GB Lexar OEM SDXC card in CrystalDiskMark 3.0.4

Conclusion

In the end, I was satisfied – I got a 512GB SDXC memory card at a fraction of the cost from a normal retail outlet. It’s not exactly a speed demon, but it’s not a slowpoke either. The looks may be deterring for most folks (and rightly so), but with the right tools and knowledge, one can pick up one of these less aesthetically-pleasing memory cards and save some serious coin in the process.

Advertisement

eMMC Adventures, Episode 1: Building my own 64GB memory card with a $6 eMMC chip

As seen on Hackaday!

There’s always some electronics topic that I end up focusing all my efforts on (at least for a certain time), and that topic is now eMMC NAND Flash memory.

Overview

eMMC (sometimes shown as e.MMC or e-MMC) stands for Embedded MultiMediaCard; some manufacturers create their own name like SanDisk’s iNAND or Hynix’s e-NAND. It’s a very common form of Flash storage in smartphones and tablets, even lower-end laptops. The newer versions of the eMMC standard (4.5, 5.0 and 5.1) have placed greater emphasis on random small-block I/O (IOPS, or Input/Output operations per second; eMMC devices can now provide SSD-like performance (>10 MB/s 4KB read/write) without the higher cost and power consumption of a full SATA- or PCIe-based SSD.

MMC and eMMC storage is closely related to the SD card standard everyone knows today. In fact, SD hosts will often be able to use MMC devices without modification (electrically, they are the same, but software-wise SD has a slightly different feature set; for example SD cards have CPRM copy protection but lack the MMC’s TRIM and Secure Erase commands. The “e” in eMMC refers to the fact that the memory is a BGA chip directly soldered (embedded) to the motherboard (this also prevents it from being easily upgraded without the proper tools and know-how.

When browsing online for some eMMC chips to test out, I found a seller that had was selling 64 GB eMMC modules for $6 Canadian per pop; this comes out to a very nice 9.375 cents per gigabyte (that’s HDD-level pricing right there!). With that in mind, I decided to buy a couple modules and see what I could do with them. A few days later, they arrived in the mail (and the seller was nice enough to send three modules instead of just two; the third module’s solder balls were flattened for some reason).

Toshiba eMMC Module

Toshiba THGBM4G9D8GBAII eMMC 4.41 modules

Toshiba THGBM4G9D8GBAII eMMC 4.41 modules

The Flash memory I used is a Toshiba THGBM4G9D8GBAII. According to a Toshiba NAND part number decoder:

  • TH: Toshiba NAND
  • G: Packaged as IC
  • B: Vcc (Flash power supply) = 3.3 V, VccQ (controller/interface power supply) = 1.8 or 3.3 V
  • M: eMMC device
  • 4: Controller revision 4
  • G9: 64 GB
  • D: MLC NAND Flash
  • 8: Eight stacked dice (eight 8 GB chips)
  • G: 24nm A-type Flash (appears to indicate Toggle Mode interface NAND)
  • BA: Lead-free and halogen-free
  • I: Industrial temperature grade (-40 to 85 degrees Celsius)
  • I: 14 x 18 x 1.2 mm BGA package with OSP (Organic Solderability Preservatives)

Given the low, low price of the eMMC chip, I had to make sure that I wasn’t given counterfeit Flash memory (often fake flash would have only 4 or 8 actual GB usable, with most of the address space looping over itself, causing data loss with extended usage). This involved find a way to temporarily connect the eMMC to my computer. I had a USB 2.0 SD/MMC reader on hand as well as a laptop with a native SD host interface, so now all I needed to do was break out the eMMC signals on the BGA package so that I can connect it to the reader.

eMMC Pinout… or is it Ball-Out?

There are plenty of pinouts for eMMC on the Internet, but they all show the pinout for a top view. Since I’m not soldering the eMMC to a PCB, I need to get a bottom view. I took a pinout diagram from a SMART Modular Technologies eMMC datasheet, rotated it to a landscape view, flipped it vertically, then flipped each row’s text in order to make it readable again. I then copy-pasted this into PowerPoint and traced out the package and ball pinouts. This allowed me to colour-code the different signal and power lines I’ll need to implement, including the data, clock, command and power lines. Curiously enough, one of the ground pins (VssQ, or controller/MMC I/O ground) was not a ground pin like the standard required; because of this, I decided to leave that pin open-circuit. Additionally, there were several pins that were not open-circuit, but did not have a known purpose either (these are probably used as test pads for the internal NAND Flash interface – perhaps they could be reused as raw NAND with the right controller, but the exact purpose of these pads will need to be reverse engineered).

Toshiba THGBM4G9D8GBAII eMMC pinout (solder balls facing up)

Toshiba THGBM4G9D8GBAII eMMC pinout (solder balls facing up)

eMMC Reader: Take 1 (Failed!)

For the first reader, I cut open a microSD-to-SD adapter, exposing the eight pins inside. I soldered a cut-up UDMA IDE cable and glued them in place. Despite my careful work, I still melted a hole through the thin plastic shell of the adapter; thankfully this did not affect the adapter’s ability to be plugged in.

I used double-sided foam adhesive tape and a piece of perfboard to create a small “test bed” for the eMMC module. Using some flux, solder wick, and a larger soldering iron tip, I removed all the (lead-free) solder balls on the center of the IC and replaced them with leaded solder bumps to make soldering the tiny 40-gauge magnet wire easier.

After bringing out the minimum wires required (VCC/VCCQ, GND, CLK, CMD, and DAT0 for 1-bit operation), I soldered the wires of my quick SD adapter, and plugged it into the SD card slot of a (very old) Dell Inspiron 9300.

Calling this board’s operation flaky doesn’t do it justice. It would fail to enumerate 9 out of 10 times, and if I even tried to do anything more than read the device capacity, the reader would hang or the eMMC would drop off the SD/MMC bus and show an empty drive in Windows. It was clear I had to do a full memory card “build” before I could verify the usability of the eMMC Flash memory.

eMMC in an SD Card’s Body: Take 1 (Success… half of the time)

I had a 16 MB (yes, megabyte) SD card lying around somewhere, but as usual, I couldn’t find it among all the clutter around my desk and workspace. Instead, I found an old, slow Kingston 2 GB SD card that I felt would be a worthy “sacrifice” since it was an older type that still had a thin PCB inside (most SD cards nowadays are monolithic, which means it’s one solid chunk with a few pads exposed). After opening up the case carefully with an Exacto knife, I wiggled out the old PCB. I desoldered the orignal 2 GB NAND Flash, and began work on breaking the SD card controller from the PCB as it was a chip-on-board design. It took a while, but I was able to ensure that none of the old SD card hardware would interfere with my rebuild.

I removed the eMMC from the board I made previously, and tested the thickness of it to ensure that it would fit inside the SD card case. It did, although the 0402 surface-mount decoupling capacitors I intended to install would cause a few bumps to be visible through the thin plastic SD card casing.

With my eMMC and SD card pinouts on hand, I used a small bead of epoxy to affix the eMMC to the PCB, balls-side up. I used magnet wire to connect the data lines (4 wires for 4-bit operation which is the maximum that the SD standard supports), and used the unused pads on the eMMC as a kind of prototyping space where I could install ceramic capacitors as close to the module as possible. I used a 0.1 µF 0402 size ceramic capacitor across the VDDi (eMMC internal regulator) and a neighouring GND pad. The rest of the power pads were wired in parallel with a few extra 0.1 µF capacitors added. I made use of the existing three 1 µF capacitors on the PCB as both extra decoupling and connection points for VCC and VCCQ. To prevent shorting of the inner CMD and CLK pins, I only removed the enamel coating from the magnet wire at the very end so I could solder them but avoid the issue of shorting those pins against the other signal and power lines. I then soldered these wires to the terminals on the other side of the PCB.

After spending about ten minutes wriggling the PCB into the SD card casing without damaging the wires, I used a multimeter to ensure all the pins were connected (use a multimeter in diode mode, with the positive lead connected to ground – any valid pins should read ~0.5 volts), and also ensured that there were no polarity reversals or shorts on the power pins.

Now… the moment of truth. At this point my USB 2.0 card reader still wasn’t cooperating with me, so I tried the only other ‘fast’ reader I had at the time – an SD to CompactFlash adapter.

To my relief, I finally got a (mostly) usable card. It appears this particular model has been pre-formatted with FAT32. Viewing the MBR in Hard Disk Sentinel shows nothing notable, apart from the fact that it’s pretty blank and is indicative that it wasn’t formatted for use as a PC boot medium.

Things began to fall apart after I tried running speed tests, as the card would hang if it experienced a lot of write activity at once. I suspected this was a power supply-related issue, so I modified my layout to add more capacitance. For good measure, I added 56 ohm termination resistance for the DAT0-4 data lines, using a small resistor network harvested from an old dead MacBook motherboard.

After these modifications, performance was much, much better. Now that the card was usable, I could finally run some speed tests.

eMMC in an SD Card’s Body – This time, with more feeling decoupling!

After adding several 100 nF and 1uF 0402-size ceramic capacitors on the eMMC package, I was able to get a stable card that could be read by (most) SD card readers. As I was rather anxious to get a decent benchmark from the eMMC, I decided to forego the cheaper Amazon Prime route, and go to my local PC parts store to buy a USB 3.0 card reader – the Kingston FCR-HS4.

After placing the eMMC and SD card PCB back into its plastic casing, I was relieved to see that Windows immediately recognized its presence. All I had to do then was open CrystalDiskMark and run the benchmark. Drum roll please…

Toshiba THGBM4G9D8GBAII/064G4A benchmark in CrystalDiskMark

Toshiba THGBM4G9D8GBAII/064G4A benchmark in CrystalDiskMark

Although I was happy to get a usable benchmark score, my belief that all eMMC devices inherently had better 4K random I/O speeds than their SD counterparts was immediately busted. My guess is that random I/O wasn’t considered to be a priority until eMMC 4.5 or 5.0, and my eMMC modules are only version 4.41.

eMMC module listed as version 4.41

eMMC module listed as version 4.41

After the speed test, I ran the card through the popular Flash memory testing tool h2testw to make sure that I was not given a counterfeit device.

H2testw showing flash memory is good

H2testw showing flash memory is good

Excellent – it’s a genuine device. Despite the slower performance than expected, I’m happy that the memory capacity is as it should be.

“eMMC identification and CSD data, please”

As is the case with any USB memory card reader, I cannot access any of the eMMC device information (that is, the CID/Card Information Data and CSD/Card Specific Data registers). I took a spare SSD from my collection and got a quick Windows 10 installation running on one of my laptops that had a native SD host interface.

eMMC identified as Toshiba 064G4A MMC

eMMC identified as Toshiba 064G4A MMC

Interesting. The eMMC identifies itself as a Toshiba 064G4A MMC card. Googling that information brought up literally zero information, so it appears I’m the only one to have found (or published) any information about it. Although eMMCs support some degree of S.M.A.R.T. health reporting like mainstream SSDs and HDDs, no (easily-available) software (for Windows at least) is available to read it.

Linux has the ability to report the CID and CSD data as long as the native SD host interface is used, as opposed to a USB card reader.

CID: 11010030363447344100151344014e00
CSD: d00e00320f5903ffffffffef96400000
date: 04/2011
enhanced_area_offset: 18446744073709551594
erase_size: 8388608
fwrev: 0x0
hwrev: 0x0
manfid: 0x000011
oemid: 0x0100
preferred_erase_size: 8388608
prv: 0x0
raw_rpmb_size_mult: 0x2
rel_sectors: 0x10
serial: 0x15134401

With the help of Gough Lui’s CID and CSD decoders, I was able to gain some more information about the eMMC device, but not too much as the information I was originally interested in was already collected by this point.

Out of the Reader and Back Into the (CF) Adapter

Now that I know what the eMMC is capable of, I decided to try putting it back into my SD-to-CF adapter and doing another benchmark.

eMMC in FC-1307A SD-to-CF adapter. Note the limited performance of this chipset.

eMMC in FC-1307A SD-to-CF adapter. Note the limited performance of this chipset.

This test highlights one of the biggest limitations of the FC1306T/FC1307A chipset that so many adapters use: their performance is limited to a maximum of 25 MB/s per channel. Good thing I purchased that USB 3.0 reader…

Conclusion

This was quite the learning experience. I not only learned that eMMC flash memory does not necessarily have the near-SSD performance that the latest devices offer, but I learned how to “exploit” the unused pads of a BGA device as a sort of “prototype area” for soldering small components onto.

Did I save any money by rolling my own Flash storage device? Absolutely not – given how much time I spent on this, if I paid myself minimum wage ($12 per hour where I live), I could have bought at least three higher-performance 64GB SDXC cards with none of the frustration of trying to adapt an embedded memory device as a removable memory card. But where’s the fun in that? 🙂

Teardown/review of Silicon Power 8GB 200x CompactFlash memory card

Hooray for nice hand-me-down SLR cameras! I finally have a better camera than the one built into my (now ancient) Samsung Galaxy S II that I use for pictures on this blog. The camera, a Canon EOS 50D, had an 8GB CompactFlash card that I was preparing to erase and reuse, and had problems trying to read out the card’s contents; a few stubborn files would refuse to copy and Explorer would simply hang until I restarted the program or unplugged the card. Additionally, when using my Hard Disk Sentinel program to do a surface scan, it too would freeze when reading a certain sector on the card.

Instead of using a USB-to-CompactFlash adapter (I could not find my card reader and have not seen it for over a year now, come to think of it) I used a CompactFlash-to-PATA adapter, then a PATA-to-SATA adapter so I could directly hook up the card to my computer. In addition to having greater theoretical throughput, it allows me to view the S.M.A.R.T. diagnostic data that the card provides.

Memory card issues and performance

The diagnostic information doesn’t really provide any insight into the health of the card; none of the S.M.A.R.T. attributes are listed as critical, and many of them are listed as vendor-specific. Oh well, at least it gave me some sort of information…

After finding a copy of the card’s contents on my home server (I seem to have previously backed up the card before the corruption occurred but didn’t recall doing so until I had raked through some of my archives), I decided I’d do a full card erase and see if it would cause the card to be usable again. I called up the Surface Test in Hard Disk Sentinel and used its surface-write tool to erase the user-accessible area of the card. A few blocks seemed to write dramatically slower than the rest and repeated write tests did not resolve their sluggishness; I call shenanigans with the memory card’s controller and its reluctance in reallocating problematic sectors…

The card itself isn’t very fast. The sequential I/O of the card is good enough for casual photography, but I would definitely not use this card in an embedded system that uses a CompactFlash as a sort of mini-SSD; even though it shows up in my system as a hard drive (non-removable), its random I/O is quite sluggish and its random write speed is worse than that of a standard hard disk drive.

Teardown

The card itself is a sandwich of aluminum plates, a plastic case and the PCB assembly that holds the controller, Flash memory and the CompactFlash connector. A hobby knife run under the aluminum plate was able to separate the plate from the plastic body; some glue and a couple clips were the only things holding the card together.

The card’s controller is a Phison PS3006, which sports a PCMCIA (and therefore CompactFlash) interface with True IDE (or plain PATA) support. It contains an 8051 microcontroller core with a few components to assist with interfacing with the Flash memory, such as a hardware ECC (error correction code) engine and a small amount of SRAM for a buffer.

The datasheet for the PS3006 doesn’t provide information on the S.M.A.R.T. attributes, nor does it indicate what type of Flash wear-leveling is provided. Given the controller’s limited computing capabilities, I’m thinking it uses a less-complex but less-reliable form of wear leveling, known as dynamic wear leveling (see Micron’s application note for more information). It’s less capable of dealing with memory wearout, but doesn’t require the computing overhead of static wear leveling (which proper SSD controllers use to keep performance up).

The memory is an Intel 29F32G08AAMD2 device, which is an asynchronous MLC NAND Flash memory chip. There are two installed on this card with another two footprints on the PCB being unpopulated, suggesting that the 16GB version of this card has all four footprints populated.

Conclusion

Given the simplicity of the card, I don’t really have much else to add about this card. Either way, it’s lost my trust with regards to holding my photos. I bought a NOS Disk 16GB CF card from Amazon as well as a SanDisk Extreme 32GB, and plan to use the latter to hold my photos, with the former mainly being a simple curiosity of the construction of a card from a lesser-known manufacturer. Hopefully those will also provide S.M.A.R.T. data, as I prefer Flash-based storage devices with some sort of S.M.A.R.T. data capability. (Is it an insatiable thirst for knowledge? A means of doing regular ‘check-ups’ on my storage device? Probably the latter, but maaayyyybe the former as well. 🙂 )