Ramble/WordPress auto-post time: 2015 in review

The WordPress.com stats helper monkeys prepared a 2015 annual report for this blog.

Here’s an excerpt:

The Louvre Museum has 8.5 million visitors per year. This blog was viewed about 120,000 times in 2015. If it were an exhibit at the Louvre Museum, it would take about 5 days for that many people to see it.

Click here to see the complete report.

Advertisements

Pick a Card, Any Card: Fast and easy Windows logon using any NFC smart card

UPDATE (September 27, 2018): Fixed a broken link to the article on bypassing MSI installer checks.

After finally reinstalling Windows on my main PC (the smart card components in the old install were trashed), I dusted off the old smart card reader and started looking into smart card-based logon options again.

Windows logon screen using a smart card

Windows logon screen using a smart card

After finding a way to force convince the installer for EIDAuthenticate, a program that lets you use smart cards to log on a Windows computer without the use of domains and Active Directory, to run on Windows 7 Professional (Microsoft DreamSpark only lets me obtain the Professional editions of Windows), I found a program called NFC Connector Light that lets you use any NFC-compatible smart card as a means of authentication.

Virtual smart card with certificate installed

Virtual smart card with certificate installed

NFC Connector Light links the unique identifier in an NFC-based smart card to create a virtual smart card on the local computer (no data is stored in the card itself), and that virtual card can be used like a real smart card within Windows. When paired with EIDAuthenticate, logging on is as simple as placing the smart card on the NFC reader and entering a PIN. This is especially useful when you set the Windows smart card policy to lock the computer when the card is removed (and it feels kind of cool to be able to lock your computer simply by taking your card off the reader).

HDQ Utility version 0.96 now available!

Whew, I’ve been working on this version for quite a while. With the helpful feedback of many people that have tried my software, I’ve made a large number of improvements to the software; of course, there are plenty of features that aren’t implemented yet, but are being worked on.

More information about how this utility works can be found here.

Download HDQ Utility v0.96 here: https://www.dropbox.com/s/pf0vszgfei7s8ly/HDQ%20Utility%200.96.zip?dl=0

Updates

  • (Major improvement!) Improved HDQ logging functionality (logs are now saved to a separate file instead of being overwritten).
    • Example: “HDQ Log (2015-10-26 at 19.02.50) – HDQ Utility v0.96.txt”
  • Improved HDQ communication (HDQ breaks no longer require the serial port to be opened more than once, and HDQ no-response timeouts are decreased from 0.5 to 0.3 seconds.
  • Reworded certain error messages for clarity.
    • Example: “Communication error: Cannot read byte from address 0x02 (No response from device).” 
  • Renamed file ‘config.txt’ to ‘Config – COM Port.txt’ for clarity.
  • Improved state-of-health warnings by making them non-modal (they do not require the user to dismiss the message).
  • Added more notifications for unidentified and uninitialized batteries. (Uninitialized batteries are determined by a FULL ACCESS security state, with Impedance Track disabled.)
  • Fixed invalid device name and maximum load current readings for v5.02/sn27545-A4 based batteries (e.g. iPhone 6, 6+…).
  • Added time-to-full readings (for firmware older than v2.24).
  • Improved error-checking for device identification (it will display a notice that the tool may need to be restarted).
  • Updated DingoLib UI library to auto-resize window to 0.9x display resolution for improved readability on larger monitors.

To-Do

  • Create a dedicated section on my blog for the HDQ Utility.
  • Create a user’s manual describing the parameters displayed by the program (in particular, the Advanced Battery Information section).
  • Improve data logging functionality by saving logs to a subdirectory instead of the program’s root to decrease file clutter.
  • Improve error-checking for commands (retry reads if one or more bytes are not received from the device).
  • Add error statistics indicating how many communication errors occurred during data collection.
  • Improve support for older (older than v1.25) firmware.
  • Improve support for v5.02/sn27545-A4 devices (make use of advanced commands available in this firmware version).
  • Add support for restarting of data collection without having to re-execute the program.
  • Add Data Flash memory functions to allow for readout of advanced configuration, serial number, lifetime/black-box data, etc.
  • Rewrite this program in something that’s not LabWindows/CVI… also, use of a GUI rather than a non-console text UI.

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 3)

Aw what, it’s October already? So much for having another blog post in September…
But anyway, “more months, more data!™”

The voltage of the PH5 has dropped down to 4.093 volts as of today (October 1st, 2015), and its State of Charge is now 93%. There’s just enough data to guess the discharge rate of the PH5: with the currently logged data, the PH5 self discharges at approximately 0.103%/day. At this rate, the cell should last years before finally reaching zero. Looks like this will be a very, very long term test…

(At least that would give me more time to procrastinate write blog posts.)

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 2)

After my first self-discharge analysis of the Kentli PH5 Li-ion AA battery, I have collected another month’s worth of data.

The battery’s voltage drop has been surprisingly linear. Although I didn’t get the exact day when the bq27621-G1’s State of Charge readout dropped to 99%, it is quite clear that the state of charge is dropping with a fairly steep curve now. That said, because the battery’s voltage is still far away from the ‘flat region’ of the discharge curve, it is difficult to determine when the battery will discharge itself completely at this time.

Self-discharge test of Kentli PH5 1.5V Li-ion AA (Part 1)

As an extension to my previous performance analysis of Kentli’s PH5 Li-ion AA battery, I fully charged an unused PH5 and left it on my desk to self-discharge. Every now and then, a Texas Instruments bq27621-G1 fuel gauge is hooked up to the Li-ion battery terminals (in the case of the PH5, the recessed ring around the 1.5V terminal) and the bq27621’s default settings are used to measure the voltage and state of charge.

I started this test on June 18th, 2015 and will keep taking occasional measurements until the protection IC in the PH5 shuts down.

Since the 18th, the voltage dropped from 4.216 volts down to 4.192 volts as of July 6, 2015; the bq27621’s State of Charge reading remains at 100% for the time being. The voltage drop has been fairly linear so far, but I expect it to taper off as the battery discharges to the Li-ion cell’s “flat region”, and only after that do I expect the cell’s voltage to decline more rapidly.

Performance analysis/review of Kentli PH5 Li-ion 1.5V AA battery

In my previous blog post, I tore down the Kentli PH5 battery – a Li-ion battery that has an internal 1.5-volt regulator that allows for terrific voltage stability… up to a point. In terms of data collection, so far I have collected 55+ runs of data logs (248 MB of text files!) and still do not quite have all the data I want. As for the data that I do have, I will be disseminating them with as much thoroughness as possible.

Updated (May 1, 2018):

The battery’s self-discharge rate experiment has come to its conclusion – click here to read it.

I forgot to add a diagram of my test setup – here’s a Visio diagram of the hardware used to test the battery’s performance… Click here to see the full-sized diagram.

ph5 cycle test setup diagram

 

Voltage vs. load current

As expected, the voltage output of the PH5 remains quite stable, up until roughly 2.1 amps where the voltage sags noticeably until the regulator goes into overcurrent protection mode.

A maximum load capacity of 2.1 amps seems to be a bit… limiting. That said, I have not done tests on the PH5’s transient load capacity, as it would require more automated control than what I currently have available.

Another issue with having such a flat discharge curve is that any device that performs fuel gauging using voltage alone will report 100% capacity, until it suddenly shuts down. This could be a big problem for digital camera users, as they will have no indication that their batteries are running low, until the device abruptly stops working. If the camera was writing an image to its memory card when the battery died, it could cause the image to be corrupted, or worse, damage the file system on the card!

Voltage vs. state-of-charge

Unless you are running the battery at a high discharge rate, the output voltage will be flat at 1.5 volts before abruptly brickwalling and dropping to zero immediately at the end of discharge. At a high load (in the case of the graph below, at 2 amps), the voltage remains flat until the very end of the discharge cycle (99% depth of discharge for my test run), where it quickly tapers off and drops to zero.

Capacity vs. load

This is the big one, and it took a lot of work to get this data, especially at low loads (48+ hours of continuous logging is just asking for Murphy’s Law to come into play). I used almost 50 discharge runs to create the graph below.

This is where things get… interesting. I was expecting the capacity to peak at low currents then taper off as the load current increases. Instead, I noticed a definite ‘hump’ in capacity around the 250 mA mark (reaching a maximum of 1700 mAh / 2550 mWh), and only after that point did I see the expected downward slope in capacity, reaching 1200 mAh (1800 mWh) at the 2 amp mark.

This data brings forth some very interesting conclusions. The PH5’s capacity is inferior to its Ni-MH counterparts (even the relatively crappy ones), and at higher discharge rates it has similar capacity to that of an alkaline at the same load, albeit with much better voltage stability than the Ni-MH or alkaline chemistries.

Other findings

Although I won’t go into too much detail for the next few points (I haven’t gotten quite enough data to be presentable), there are some other issues with the battery that I think should still be mentioned.

One issue is the amount of heat the battery gives off at high loads. At 2.1 amps, I had to use a fan to blow cool air onto the DC-DC converter just to prevent it from entering its over-temperature shutdown mode. Although the converter itself can tolerate elevated temperatures, the Li-ion cell inside will not; the uneven heating that the cell will encounter could potentially degrade its lifespan in the long run.

Another problem is efficiency. At 1 amp, the DC-DC converter is about 75% efficient, and is only 65% efficient at 2 amps. I have not tested the converter’s efficiency at lower loads yet, but I doubt it will achieve more than 85-90% efficiency.

A potential issue with this battery is self-discharge. The buck converter remains active all the time, unless the converter or the Li-ion protection circuit enters a protective shutdown state. I have not had a chance to fully charge an unmodified battery in order to perform a long-term self-discharge test, but I will create another blog post for that, if/when the time comes. Update (May 3, 2018): See the top of the page for the link to the self-discharge test results.

Conclusion

Overall, I’m on the fence when it comes to this battery. Its innovative design does provide unparalleled voltage stability, but its low capacity even at moderate discharge rates dampens the fun significantly. Additionally, the 2.1 amp discharge limit could prove to be a bottleneck for some high-drain applications; this, coupled with the cell’s tendency to shut down abruptly when the internal cell runs empty could potentially cause file system corruption for digital cameras that have not been designed to handle such sudden power interruptions.

Also, the batteries are very costly. At about $10 per cell, you may want to think twice about replacing all your current disposable and rechargeable batteries with these newfangled Li-ion ones. Don’t forget the charger either, as a special charger is required to make contact with a recessed terminal on the top of the battery.

Overall, this cell is… interesting. Just don’t expect a miracle in a steel can.

Pros:

  • Excellent voltage stability, even at high loads
  • Li-ion chemistry allows for a very lightweight cell, even with the addition of a DC-DC converter
  • High output voltage could allow some devices to run more efficiently

Cons:

  • Low capacity – provides a mere 1200 mAh (1800 mWh) @ 2 amps, and up to 1700 mAh (2550 mWh) @ 250 mA (even alkaline batteries can do better than this)
  • Abrupt shutdown when the battery is overloaded, overheated, or over-discharged
  • Runs hot at high loads (and therefore is fairly inefficient)
  • 1.5 MHz converter and unshielded inductor can cause excessive EMI (electromagnetic interference) in sensitive devices
  • Expensive! Costs approximately $10/cell
  • Requires proprietary charger

Bottom Line: This is a niche product and should not be considered a universal replacement for alkaline or Ni-MH AA batteries.

Ramble: Fixstars’ 6TB SATA SSD – is it a thing?

If you know me personally, you’ll know that I absolutely love SSDs. Every PC I own has one, and I can’t stand to use a computer that runs off an HDD anymore. Naturally, when I read about a 6 TERABYTE SSD coming out, it piqued my curiosity.

Photo is owned by Fixstars and is not my property. Retrieved from http://www.fixstars.com/en/news/wp-content/uploads/2015/05/SSD-6000M.png

Official SSD-6000M promotional photo, taken from Fixstars’ press release

A Japanese company by the name of Fixstar has recently announced the world’s first 6TB SATA-based SSD. Although 2.5″ SSDs in such a capacity range already exist, they’re SAS (Serial Attached SCSI) based which limits them primarily to server/datacenter usage. According to Fixstars’ press release, their SSD-6000M supports sequential read speeds of 540 MB/s, and sequential write speeds of 520 MB/s, which is on par with most modern SATA III (6 Gbps) SSDs on the market today.

Concerns

However, after reading a bit online, I’m beginning to have some concerns about the drive’s real-world performance. One thing that is rather worrying is that the company has only mentioned sequential I/O speeds and has said nothing on random I/O or read/write latency; although SSDs do have much better sequential speeds than their mechanical spinning counterparts, they really shine when it comes to random I/O (which makes up much of a computer’s typical day-to-day usage). In the early, early days of SSDs, manufacturers cared only about sequential I/O and it resulted in some SSDs that were absolutely terrible when it came to random I/O (fun fact: I once had an early SSD, the Patriot PS-100, and its performance was so bad that it actually turned me off of SSDs for a few years, so I know how bad such unoptimized SSDs can perform).

Construction

The SSD appears to be made up of 52 eMMC (embedded MultiMediaCard) chips in a sort of RAID 0 configuration and an FPGA (field-programmable gate array) as the main controller. In layman’s terms, this SSD is literally made up of a bunch of SD cards “strapped” together with a chip so that it appears as one single drive. In that sense, one can make a similar solution using a board like this, which parallels multiple microSD cards to act as a single ‘SSD’.

Image retrieved from Amazon (http://ecx.images-amazon.com/images/I/51y0QqWL5sL.jpg)

The consumer equivalent of the SSD-6000M: SD cards and a controller chip. You can even get them from Amazon.

Conclusion

I’m wary of how well this SSD is going to take off. It could end up being a tremendous success, but it’ll certainly be out of the reach of the consumer market – either by its potentially poor random I/O performance, or its price (apparently it will cost well over $6000 USD).

Quick Review: Littelfuse Smart Glow automotive fuse

2015-05-09 16.29.34It Glows when it Blows! [add obligatory Michael Scott line here]

(I’m sorry. I couldn’t help myself.)

Okay, now that the lowbrow humor has been dealt with, I had to replace a car fuse because of a shorted 12-volt power socket. Luckily, I was able to replace the fuse without the circuit blowing again; however, I had used the only spare fuse in the fuse box and needed to buy some more in case the fault was to recur. Browsing my local Canadian Tire, I stumbled upon a pack of fuses that allowed for a visual check for blown fuses by simply turning on the ignition: the Littelfuse Smart Glow fuse. A 36-pack of these fuses cost about $35 Canadian, making them a bit pricier than their non-illuminated counterparts.

Construction

Closeup of fuse, LED and resistor

Closeup of fuse, LED and resistor

The Smart Glow fuse is comprised of three main components: the actual fuse (which is really just a regular automotive fuse), a 360-ohm resistor, and a dual red LED package with the diodes in inverse parallel to allow for the fuse to glow regardless of orientation. The LEDs and resistors are affixed to the fuse body using various epoxies: an opaque red epoxy to glue the components down, a conductive silver-filled epoxy to provide an electrical connection without soldering, and a clear epoxy to protect the components from damage; the fuse amperage is re-printed on top of the protective epoxy coating since the resistor and LED obscure the original fuse’s markings.

Schematic of Littelfuse Smart Glow fuse

Schematic of Littelfuse Smart Glow fuse

Performance

Simply put, this acts like any other automotive fuse would. The only difference is that the LED will illuminate if the fuse is blown, and sufficient load is still present in the circuit to provide enough current for the LED to act as a fault indicator.

Fuse blown and LED indicator lit with 5 volts

Fuse blown and LED indicator lit with 5 volts

When testing the fuse’s brightness, I found it to be quite noticeable at 5 volts and almost blindingly bright when run at 14.4 volts (the approximate charging voltage for a 12-volt car battery).

Simulation of LED indicator

Simulation of LED indicator

Running this circuit through a simulator, the LED has almost 35 mA of current running through it. Given how LEDs are typically rated for a maximum of 20 mA, this LED is not going to last long; that said, it shouldn’t need to run for a long time as the LED’s only purpose is to notify the user that the fuse needs to be replaced (and at that point the fuse and its indicator will be disposed of anyway).

Conclusion

Yes, it glows when it blows; I have nothing more to add.

(The same could be said for Rudolph the Red-Nosed Reindeer, but he’s a non-electronic entity and is therefore outside the scope of this blog. :P)

Review of SanDisk Extreme CompactFlash 32GB (SDCFXS-032G)

After my previous review of a Silicon Power 8GB CompactFlash memory card, I was looking around for more CF cards to review, in the hopes of finding a higher-performing card with S.M.A.R.T. health reporting and the ability of acting as a “fixed disk” (that is, identifying to the system as a hard drive rather than a removable disk), and decided to purchase this memory card from Amazon.

Advertised specifications

The card’s specifications indicate that the CompactFlash card is capable of 120MB/s sequential read and 60MB/s sequential write speeds, has a lifetime warranty and comes with a license key for a 1-year subscription to their RescuePRO data recovery software. It is advertised to have internal RTV (room-temperature vulcanization) silicone potting, has an operational temperature range of -25 to 85 degrees Celsius (-13 to 185 Fahrenheit), and uses their “ESP (Enhanced Super-Parallel) Technology” which I presume is some sort of proprietary multi-channel controller, and is UDMA 7 (167 MB/s maximum interface speed) capable.

Benchmark – Setup

To connect the card to my computer, I used a CompactFlash-to-IDE converter and a Marvell 88SE9128-based SATA/PATA host bus adapter. This allows me to use up to UDMA 6 (133 MB/s maximum interface speed) as UDMA 7 is basically restricted to cameras as it’s only part of the CompactFlash official specifications.

Benchmark – CrystalDiskMark

For this test, I manually zero-filled the card using Hard Disk Sentinel, formatted it with exFAT, then ran CrystalDiskMark, set to 3 runs with a 500MB file size using random data, all zeros (0x00), and all ones (0xFF).

Data Type Test Read (MB/s) Write (MB/s) IOPS Read IOPS Write
Random Sequential 103.2 52.45
512K Random 99.55 29.57
4K Random (QD1) 11.37 0.916 2775.2 223.6
4K Random (QD32) 17.24 1.413 4208.2 344.9
All 0 (0x00) Sequential 104.3 54.25
512K Random 98.27 31.22
4K Random (QD1) 11.36 1.1 2773.3 268.5
4K Random (QD32) 17.39 1.263 4244.5 308.4
All 1 (0xFF) Sequential 104.5 53.95
512K Random 98.05 25.84
4K Random (QD1) 11.19 1.112 2733 271.4
4K Random (QD32) 17.32 1.437 4229.3 351

It appears that there is no significant difference between the tests depending on what data was used for the benchmark.

Benchmark – AS SSD

As with CrystalDiskMark, I zeroed out the card and formatted it as exFAT before running the test.

Test Read Write
Sequential 99.70 MB/s 46.13 MB/s
4K 11.40 MB/s 0.74 MB/s
4K 64 Thread 12.80 MB/s 1.03 MB/s
Access Time 0.389 ms 5.504 ms
Score 34 6
61

Benchmark – Hard Disk Sentinel

I ran three separate benchmarks with Hard Disk Sentinel’s Surface Test feature, using the read and write (both empty and random data) tests, and used the Random Seek Test to measure the card’s responsiveness after filling it with empty and random data.

Test Speed
Read 0x00 95.20 MB/s
Read Random 97.30 MB/s
Write 0x00 49.81 MB/s
Write Random 49.04 MB/s
Seek Time 0x00 0.35 ms
Seek Time Random 0.37 ms

Once again, there does not appear to be any appreciable difference between an empty (zeroed-out) or full card.

Analysis – HWiNFO64

Now that the benchmarks are out of the way, let’s take a look at the card and what it can (and can’t) do. Let’s take a look at the details of the drive…

The card shows up as a regular IDE drive in HWiNFO, and has information about its CHS (Cylinder-Head-Sector) geometries and supported I/O interface speeds. Here we can see the card supports up to UDMA 7 but is running at UDMA 6 as because it is connected to a PC IDE bus.

Now for the kicker: Does the drive identify itself as a fixed or removable disk? Cross your fingers…

NOPE! The SanDisk Extreme CompactFlash card does NOT identify as a fixed disk, but instead as a removable drive. This means that the hopes of using this as a bootable Windows disk are now out the window. [ba-dum-tssh!]

Analysis – Hard Disk Sentinel

Looking at the Overview tab in HDS, something weird is happening. It states that “the hard disk status is PERFECT” yet it has no health or performance percentages available. If I open the Information tab, I can see that the SanDisk Extreme CompactFlash card does NOT support S.M.A.R.T. health reporting. Bummer. Additionally, it appears that Windows does not like removable IDE drives that lack S.M.A.R.T. and instead report garbage data (or data mirrored from another drive in the system).

Looking further inside the Information tab, we can see the features that the memory card does support. It supports DMA, Ultra DMA, APM (advanced power management), write caching, 48-bit LBA (logical block address) addressing, IORDY (flow control), a NOP (no-operation) command, and has the CFA (CompactFlash Association) feature set.

Since the card reported that it supported APM, I tried to enable it but the card refused to accept the command.

Conclusion

Overall, I like this card quite a bit. It has fast sequential I/O and a respectable random read speed. However, this is soiled by the fact that the card is configured to show up as a removable disk, which renders the card unusable as a Windows boot drive, and the lack of S.M.A.R.T. health and temperature reporting makes me a bit uneasy as I cannot track the card’s program-erase cycle count during use.

Oh well. Looks like the hunt for a fast, fixed-disk CompactFlash card continues…

Mini-Ramble: Blog posting schedule is now running on Valve Time

Ergh, it’s been way too long since I’ve actually put out content on this blog. So many ideas and drafts, but none of them are even close to being publishable material. My apologies for dragging my heels for the past few months. :/

(FYI, the term “Valve Time” refers to a video game company whose release/development timelines are grossly understated, usually several times longer than the anticipated duration.)

Anyway, the Kentli PH5 analysis is still underway, as I’m doing low-load tests that can take over 24 hours to complete a single run (and many of them had glitches near the end, meaning that I had to throw out 72+ hours worth of data!), and I’m probably being too thorough with my analysis as I’ve yet to process efficiency and thermal effects at various load currents. I might just publish the analysis in two parts; the first being the overall capacity and output voltage at various loads; the second being all the efficiency/thermal effects data at different load levels.

I bought a Monster Digital OverDrive 128GB USB external “SSD” a couple months ago (spoiler alert: it’s just a flat USB thumbdrive that doesn’t perform like a ‘real’ SSD at all), and I still have barely started work on that blog post.

Same goes for the newer version of the Charging Essentials Tamper-Resistant USB wall outlet. The raw data is collected but the proper graphs haven’t even been done yet.

But before I get to the USB wall outlet, I still need to get a blog post done of this nifty little USB charger measurement tool I made using a TI fuel gauge chip.

The list goes on. I reeallllly gotta shift into high gear if I want to get any meaningful content out this year…

So, about that Kentli battery…

It’s been a while since I’ve posted about the Kentli PH5 battery, which is a Li-ion cell with an integrated 1.5-volt regulator, wrapped up in an AA-sized package. Although I haven’t written much about its performance yet, that doesn’t mean I haven’t been doing work on it. In fact, I’m sure I have never put so much work into a single blog post before!

The full analysis of the battery’s performance is not fully complete, but I’ll reveal some details of my test setup and what I’m currently working on:

Analysis

I’m doing a much more thorough analysis of this battery than I have done with any other one on this blog. I have created a second bq27541 fuel gauge board, but with the explicit goal of measuring the voltage, current, passed charge (mAh) and temperature of a given DC-DC converter. This way, I can measure the input and output of the DC-DC converter simultaneously, greatly enhancing the data I can collect.

These are the data points/attributes I am currently collecting:

  • Battery voltage sag at high load currents
  • Battery capacity over different load currents (it’s not constant!)
  • DC-DC efficiency, both at different load currents but also over a single discharge cycle
  • Temperature rise of the DC-DC converter at different loads, and also over a single discharge cycle
  • Changes in battery capacity and internal resistance over many charge cycles

I want to be as thorough as possible with my measurements, mostly because nobody else has done a detailed performance review of this rather unusual battery, but also partially because I want to challenge myself and see how much of a “real engineer” I can be (#JustHobbyistThings). 😛

Teardown/review of Silicon Power 8GB 200x CompactFlash memory card

Hooray for nice hand-me-down SLR cameras! I finally have a better camera than the one built into my (now ancient) Samsung Galaxy S II that I use for pictures on this blog. The camera, a Canon EOS 50D, had an 8GB CompactFlash card that I was preparing to erase and reuse, and had problems trying to read out the card’s contents; a few stubborn files would refuse to copy and Explorer would simply hang until I restarted the program or unplugged the card. Additionally, when using my Hard Disk Sentinel program to do a surface scan, it too would freeze when reading a certain sector on the card.

Instead of using a USB-to-CompactFlash adapter (I could not find my card reader and have not seen it for over a year now, come to think of it) I used a CompactFlash-to-PATA adapter, then a PATA-to-SATA adapter so I could directly hook up the card to my computer. In addition to having greater theoretical throughput, it allows me to view the S.M.A.R.T. diagnostic data that the card provides.

Memory card issues and performance

The diagnostic information doesn’t really provide any insight into the health of the card; none of the S.M.A.R.T. attributes are listed as critical, and many of them are listed as vendor-specific. Oh well, at least it gave me some sort of information…

After finding a copy of the card’s contents on my home server (I seem to have previously backed up the card before the corruption occurred but didn’t recall doing so until I had raked through some of my archives), I decided I’d do a full card erase and see if it would cause the card to be usable again. I called up the Surface Test in Hard Disk Sentinel and used its surface-write tool to erase the user-accessible area of the card. A few blocks seemed to write dramatically slower than the rest and repeated write tests did not resolve their sluggishness; I call shenanigans with the memory card’s controller and its reluctance in reallocating problematic sectors…

The card itself isn’t very fast. The sequential I/O of the card is good enough for casual photography, but I would definitely not use this card in an embedded system that uses a CompactFlash as a sort of mini-SSD; even though it shows up in my system as a hard drive (non-removable), its random I/O is quite sluggish and its random write speed is worse than that of a standard hard disk drive.

Teardown

The card itself is a sandwich of aluminum plates, a plastic case and the PCB assembly that holds the controller, Flash memory and the CompactFlash connector. A hobby knife run under the aluminum plate was able to separate the plate from the plastic body; some glue and a couple clips were the only things holding the card together.

The card’s controller is a Phison PS3006, which sports a PCMCIA (and therefore CompactFlash) interface with True IDE (or plain PATA) support. It contains an 8051 microcontroller core with a few components to assist with interfacing with the Flash memory, such as a hardware ECC (error correction code) engine and a small amount of SRAM for a buffer.

The datasheet for the PS3006 doesn’t provide information on the S.M.A.R.T. attributes, nor does it indicate what type of Flash wear-leveling is provided. Given the controller’s limited computing capabilities, I’m thinking it uses a less-complex but less-reliable form of wear leveling, known as dynamic wear leveling (see Micron’s application note for more information). It’s less capable of dealing with memory wearout, but doesn’t require the computing overhead of static wear leveling (which proper SSD controllers use to keep performance up).

The memory is an Intel 29F32G08AAMD2 device, which is an asynchronous MLC NAND Flash memory chip. There are two installed on this card with another two footprints on the PCB being unpopulated, suggesting that the 16GB version of this card has all four footprints populated.

Conclusion

Given the simplicity of the card, I don’t really have much else to add about this card. Either way, it’s lost my trust with regards to holding my photos. I bought a NOS Disk 16GB CF card from Amazon as well as a SanDisk Extreme 32GB, and plan to use the latter to hold my photos, with the former mainly being a simple curiosity of the construction of a card from a lesser-known manufacturer. Hopefully those will also provide S.M.A.R.T. data, as I prefer Flash-based storage devices with some sort of S.M.A.R.T. data capability. (Is it an insatiable thirst for knowledge? A means of doing regular ‘check-ups’ on my storage device? Probably the latter, but maaayyyybe the former as well. 🙂 )

Ramble: I really need to get more content on here…

Wow, it’s almost February and yet it only feels like the new year has just begun! That also means that I haven’t put out any new blog posts recently, and I need to change that.

Upcoming blog posts include:

  • Teardown of genuine, and “semi-fake” iPhone 6 and 6 Plus batteries
  • Creating a USB charger/power bank analysis tool with a bq27541 fuel gauge chip
  • Attempting (and failing) to directly connect the SanDisk Extreme USB 3.0 drive’s internal SSD to the SATA bus on my computer
  • Teardown and analysis of some Costco-purchased power banks

Ramble/WordPress auto-post time: 2014 in review

The WordPress.com stats helper monkeys prepared a 2014 annual report for this blog.

Here’s an excerpt:

Madison Square Garden can seat 20,000 people for a concert. This blog was viewed about 66,000 times in 2014. If it were a concert at Madison Square Garden, it would take about 3 sold-out performances for that many people to see it.

Click here to see the complete report.

Teardown of Kentli PH5 1.5 V Li-Ion AA battery

June 17, 2015 – Performance analysis/review HERE!

After having an entire month of dormancy on this blog, I’m finally beginning to cross off the blog posts on my “Pending” list.

Last year, I made a blog post talking about Kentli’s lithium-ion based AA battery that has an internal 1.5 volt regulator. The first order never arrived, and the second one had arrived a few months ago but I never got to actually taking one of the cells apart. That changes today.

Cell overview

The battery itself looks like a regular AA battery, except for the top positive terminal. There’s the familiar ‘nub’ that constitutes the 1.5 volt output, but also has a recessed ring around it that provides a direct connection to the Li-ion cell’s positive connection for charging.

 

After peeling the label, we are met with a plain steel case, save for the end cap that appears to be laser spot-welded. Wanting to take apart the cell with minimal risk of shorting something out inside, I used a small pipe cutter to gently break apart the welded seam. Two revolutions and a satisfying pop sound later, the battery’s guts are revealed.

Battery internals

The PCB that holds the 1.5 volt regulator is inside the end cap, with the rest made up of the Li-ion cell itself. Curiously enough, the cell inside is labeled “PE13430 14F16 2.66wh” which is interesting in more than one way. First of all, the rated energy content of the cell is less than what’s on the outside label (2.66 watt-hours versus 2.8), and the cell inside is actually a Li-ion polymer (sometimes called a “Li-Po” cell) type; I was expecting a standard cylindrical cell inside. Unfortunately, my Google-fu was unable to pull up any data on the cell. I might attempt to do a chemistry identification cycle on the cell and see if TI’s battery database can bring something up.

Battery circuitry

The end cap’s PCB uses a Xysemi XM5232 2.5 A, 1.5 MHz synchronous buck converter to provide the 1.5 volt output. According to the datasheet, it is a fully integrated converter with all the power semiconductor components residing on the chip itself. The converter is rated for 2.5-5.5 volt operation, well within the range of a Li-ion cell. Additionally, it has a rated Iq (quiescent/no-load current) of only 20 microamps. The buck converter’s 2.2 microhenry inductor is magnetically unshielded which may cause some increased EMI (electromagnetic interference) emissions, but I don’t have the equipment to test this.

I was looking around for the battery’s protection circuit, and found it on the flex PCB that surrounds the Li-ion cell. It uses a Xysemi XB6366A protection circuit which, like the buck converter, is a fully-integrated device; there are no external protection MOSFETs for disconnecting the cell from the rest of the circuit.

Performance analysis

December 14, 2015 – After extensive and detailed analysis (148 MB of text files!), I’ve analyzed the battery’s voltage and output capacity, which can be viewed HERE (lots of pretty graphs; check it out!).

The data doesn’t stop there. It took almost three years to track the cell’s self-discharge, but the data is finally in. The final report is available here, but previous installments are available here (Part 1), here (Part 2), here (Part 3)here (Part 4) and here (Part 5).

(Day 3 and 4 of 4) Mini-Ramble: Dallas! TI! Batteries!

Oh wow, already a week since the event finished; I need to get posts written up more often!

Anyway, the last 2 days of the event were pretty much information seminars with three separate ‘tracks’ with one of them being all about fuel gauges (you can guess which one I went to 🙂 ). They discussed the reasons that fuel gauging is so important (and why “just measure the voltage” usually isn’t good enough), and also explained why your battery life just plummets after a few hundred cycles or 20% wear.

One of the main fuel gauge guys at TI gave me an evaluation board for their latest-and-greatest fuel gauge, the bq40z50. This gauge is able to handle 1-4 cells in series, which means that you can now pack a laptop battery’s smarts into a battery meant for a smartphone or tablet.

I’d post more but these few posts were “Mini-Rambles” after all. I may post a few pictures later on.

(Day 2 of 4) Mini-Ramble: Dallas! TI! Batteries!

Today was the first day of the actual Texas Instruments Battery Management Systems event. To my surprise, a couple hundred of people showed up from TI employees, a lot of customers (representatives from various companies like Bose, Google, and many others), and me as well. 🙂

The first day was a basic but still detailed introduction to the inner workings of Li-Ion technology as well as its limitations, failure modes (the gas coming from a Li-Po [lithium-ion polymer] cell contains carbon monoxide, hydrogen and a bunch of other gases), with this leading towards battery fuel gauges and why just measuring the voltage is not enough to accurately determine how full a battery is.

The day ended with a lab showcasing TI’s new Gauge Development Kit (GDK), which, in layman’s terms, is a “battery lab on a board”. It includes PC communication hardware, an adjustable charger, adjustable load and an on-board fuel gauge (but it’s set to use an external fuel gauge by default). I even got a chance to talk the TI battery management team, and even had a dinner with a few key TI guys including the one who made THE design for the GDK.

(Day 1 of 4) Mini-Ramble: Dallas! TI! Batteries!

Woohoo, travel time! Today marks the first day in Dallas attending Texas Instruments’ Battery Management Systems deep-dive seminar. Okay, technically it doesn’t start until tomorrow, but that doesn’t mean today was any less exciting.

The flight from Calgary to Dallas wasn’t too eventful, besides a controller fault that required going back to the terminal to resolve, but trying to grab a SIM card to put in my phone was a whole other ordeal. Fry’s carries the card but doesn’t carry the refill PINs, and my Canadian credit card would not work both online and on the phone; it was only when I went to Best Buy to purchase a refill card with cash that I was finally able to get cellular phone and data access.

I was also given a tour of the main TI facility, and boy it is HUGE! As much as I would have loved to share images, I signed an agreement explicitly stating I cannot do so. However, I was able to see a bunch of the lab rooms, offices and demo stands showcasing various TI technologies at work, such as the ARM processors in the Nest thermostat, the DLP chips in pocket projectors, and so on. I even got to see many of the people in the TI Battery Management team in person, but because of the seminar running from Tuesday to Thursday, they were visibly too busy with work to have a chat.

Tomorrow marks the first instalment of the Battery Management Deep-Dive Training sessions. There is preliminary word that I may have an opportunity to speak in public for a couple minutes about the TI forums and why I’m here.

A Little Pick-Me-Up: Samsung 840 EVO SSD slowdowns, and how to fix it (for now…)

There’s been word going around that Samsung’s 840 EVO solid-state drives have an issue where they become really, really slow to read if the data on it has been sitting around for a few months, and I can confirm this is the case as well.

The first half of the drive (which holds a fair amount of static data) was being read at around 30 MB/s, with newer data being read at almost 500 MB/s. That’s a pretty big difference. One thing to note (I didn’t take a screenshot for this) is that although the overall read speed was significantly affected, the read latency was only somewhat slower; only about 10-20 microseconds of extra latency.

To temporarily fix this (at least until Samsung releases a firmware update in the middle of October), I used Hard Disk Sentinel to read and rewrite all of the data on the SSD. Because this involves accessing data that is normally locked by Windows, I made a custom WinPE (a slimmed-down, portable version of Windows that’s used for installation and recovery) image with Hard Disk Sentinel inside it. This allowed me to boot outside of the normal Windows setup, and perform the Read+Write+Read test to refresh all of the data stored on the SSD. Note that this will impart a lot of write activity to the NAND flash in the SSD (hence a chance for increasing wear), but modern SSDs aren’t as delicate as people might think.

HD Sentinel's Refresh Data Area test

Hard Disk Sentinel’s “Refresh Data Area” test

This took about 2 hours on my 250 GB SSD. Afterwards, another read test showed that the drive was working smoothly again.

Will I still buy a Samsung SSD? Absolutely. No data was lost and Samsung did the right thing by acknowledging the issue and also finding a way to fix it, as opposed to simply calling it a non-issue and sweeping it under the rug.